Advertisement

An Institution for Event-B

  • Marie Farrell
  • Rosemary Monahan
  • James F. Power
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10644)

Abstract

This paper presents a formalisation of the Event-B formal specification language in terms of the theory of institutions. The main objective of this paper is to provide: (1) a mathematically sound semantics and (2) modularisation constructs for Event-B using the specification-building operations of the theory of institutions. Many formalisms have been improved in this way and our aim is thus to define an appropriate institution for Event-B, which we call \(\mathcal {EVT}\). We provide a definition of \(\mathcal {EVT}\) and the proof of its satisfaction condition. A motivating example of a traffic-light simulation is presented to illustrate our approach.

Keywords

Event-B Institutions Refinement Formal methods Modular specification Formal specification 

Notes

Acknowledgements

The authors would like to acknowledge the reviewers for their helpful comments and Ionut Tutu for his assistance with the presentation of the technical details of our institution for Event-B.

References

  1. 1.
    Abrial, J.-R.: Modeling in Event-B: System and Software Engineering, 1st edn. Cambridge University Press, New York (2010)CrossRefzbMATHGoogle Scholar
  2. 2.
    Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin: an open toolset for modelling and reasoning in Event-B. Int. J. Softw. Tools Technol. Transf. 12(6), 447–466 (2010)CrossRefGoogle Scholar
  3. 3.
    Abrial, J.-R., Hallerstede, S.: Refinement, decomposition, and instantiation of discrete models: application to Event-B. Fundamenta Informaticae 77(1–2), 1–28 (2007)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Achouri, A., Jemni Ben Ayed, L.: UML activity diagram to Event-B: a model transformation approach based on the institution theory. In: Information Reuse and Integration, pp. 823–829, August 2014Google Scholar
  5. 5.
    Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification and programming. J. ACM 39(1), 95–146 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Iliasov, A., Troubitsyna, E., Laibinis, L., Romanovsky, A., Varpaaniemi, K., Ilic, D., Latvala, T.: Supporting reuse in Event B development: modularisation approach. In: Frappier, M., Glässer, U., Khurshid, S., Laleau, R., Reeves, S. (eds.) ABZ 2010. LNCS, vol. 5977, pp. 174–188. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-11811-1_14 CrossRefGoogle Scholar
  7. 7.
    Jastram, M., Butler, P.M.: Rodin User’s Handbook: Covers Rodin V.2.8. CreateSpace Independent Publishing Platform (2014)Google Scholar
  8. 8.
    Knapp, A., Mossakowski, T., Roggenbach, M., Glauer, M.: An Institution for simple UML state machines. In: Egyed, A., Schaefer, I. (eds.) FASE 2015. LNCS, vol. 9033, pp. 3–18. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46675-9_1 Google Scholar
  9. 9.
    Mossakowski, T., Maeder, C., Lüttich, K.: The heterogeneous tool set, Hets. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-71209-1_40 CrossRefGoogle Scholar
  10. 10.
    Mosses, P.D. (ed.): CASL Reference Manual. LNCS, vol. 2960. Springer, Heidelberg (2004).  https://doi.org/10.1007/b96103 zbMATHGoogle Scholar
  11. 11.
    Sanella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal Software Development. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  • Marie Farrell
    • 1
  • Rosemary Monahan
    • 1
  • James F. Power
    • 1
  1. 1.Department of Computer ScienceMaynooth UniversityMaynoothIreland

Personalised recommendations