Advertisement

Probability Functions in the Context of Signed Involutive Meadows (Extended Abstract)

  • Jan A. Bergstra
  • Alban PonseEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10644)

Abstract

The Kolmogorov axioms for probability functions are placed in the context of signed meadows. A completeness theorem is stated and proven for the resulting equational theory of probability calculus. Elementary definitions of probability theory are restated in this framework.

Keywords

Meadow Bayes’ theorem Bayesian reasoning 

References

  1. 1.
    Adams, E.: Probability and the logic of conditionals. In: Hintikka, J., Suppes, P. (eds.) Aspects of Inductive Logic, pp. 265–316. North-Holland (1966)Google Scholar
  2. 2.
    Barber, D.: Bayesian Reasoning and Machine Learning. Cambridge University Press, Cambridge (2012). http://web4.cs.ucl.ac.uk/staff/D.Barber/pmwiki/pmwiki.php?n=Brml.Online. ISBN 0521518148, 9780521518147. On-line version 18 November 2015zbMATHGoogle Scholar
  3. 3.
    Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1(3), 195–200 (1964)Google Scholar
  4. 4.
    Bergstra, J.A., Bethke, I., Ponse, A.: Cancellation meadows: a generic basis theorem and some applications. Comput. J. 56(1), 3–14 (2013).  https://doi.org/10.1093/comjnl/bxs028. https://arxiv.org/abs/0803.3969v3 CrossRefGoogle Scholar
  5. 5.
    Bergstra, J.A., Bethke, I., Ponse, A.: Equations for formally real meadows. J. Appl. Log. 13(2, Part B), 1–23 (2015).  https://doi.org/10.1016/j.jal.2015.01.004. https://arxiv.org/abs/1310.5011v4 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bergstra, J.A., Middelburg, C.A.: Inversive meadows and divisive meadows. J. Appl. Log. 9(3), 203–220 (2011). https://arxiv.org/abs/0907.0540v3 MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bergstra, J.A., Middelburg, C.A.: Division by zero in involutive meadows. J. Appl. Log. 13(1), 1–12 (2015). https://arxiv.org/abs/1406.2092 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bergstra, J.A., Ponse, A.: Fracpairs and fractions over a reduced commutative ring. Indag. Math. 27, 727–748 (2016).  https://doi.org/10.1016/j.indag.2016.01.007. https://arxiv.org/abs/1411.4410v2 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Carlström, J.: Wheels - on division by zero. Math. Struct. Comput. Sci. 14(1), 143–184 (2004).  https://doi.org/10.1017/S0960129503004110 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Fine, A.: Joint distributions, quantum correlations, and commuting observables. J. Math. Phys. 23, 1306–1310 (1982).  https://doi.org/10.1063/1.525514 MathSciNetCrossRefGoogle Scholar
  11. 11.
    Fine, A.: Hidden variables, joint probability, and the Bell inequalities. Phys. Rev. Lett. 48(5), 291–295 (1982).  https://doi.org/10.1103/PhysRevLett.48.291 MathSciNetCrossRefGoogle Scholar
  12. 12.
    Milne, P.: Bruno de Finetti and the logic of conditional events. Br. J. Philos. Sci. 48, 195–232 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    de Muynck, W.M.: Foundations of quantum mechanics, an empiricist approach. In: Fundamental Theories of Physics, vol. 127. Kluwer Academic Publishers (2002). Pre-publication version: http://www.phys.tue.nl/ktn/Wim/Kluwerbookprepversion.pdf
  14. 14.
    Padmanabhan, H.: A self-dual equational basis for Boolean algebras. Canad. Math. Bull. 26(1), 9–12 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Rastall, P.: The Bell inequalities. Found. Phys. 13(6), 555–570 (1983)MathSciNetCrossRefGoogle Scholar
  16. 16.
    dos Reis, T.S., Gomide, W., Anderson, J.A.D.W.: Construction of the transreal numbers and algebraic transfields. IAENG Int. J. Appl. Math. 46(1), 11–23 (2016). http://www.iaeng.org/IJAM/issues_v46/issue_1/IJAM_46_1_03.pdf MathSciNetGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  1. 1.Informatics InstituteUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations