Advertisement

Canonical Selection of Colimits

  • Till Mossakowski
  • Florian Rabe
  • Mihai Codescu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10644)

Abstract

Colimits are a powerful tool for the combination of objects in a category. In the context of modeling and specification, they are used in the institution-independent semantics (1) of instantiations of parameterised specifications (e.g. in the specification language CASL), and (2) of combinations of networks of specifications (in the OMG standardised language DOL).

The problem of using colimits as the semantics of certain language constructs is that they are defined only up to isomorphism. However, the semantics of a complex specification in these languages is given by a signature and a class of models over that signature – not by an isomorphism class of signatures. This is particularly relevant when a specification with colimit semantics is further translated or refined. The user needs to know the symbols of a signature for writing a correct refinement.

Therefore, we study how to usefully choose one representative of the isomorphism class of all colimits of a given diagram. We develop criteria that colimit selections should meet. We work over arbitrary inclusive categories, but start the study how the criteria can be met with \(\mathbb Set\)-like categories, which are often used as signature categories for institutions.

References

  1. 1.
    Baumeister, H., Cerioli, M., Haxthausen, A., Mossakowski, T., Mosses, P.D., Sannella, D., Tarlecki, A.: CASL Semantics. In: Mosses, P.D. (ed.) CASL Reference Manual, Part III. LNCS, vol. 2960. Springer, London (2004). Edited by Sannella, D., Tarlecki, AGoogle Scholar
  2. 2.
    Borceux, F.: Handbook of Categorical Algebra I - III. Cambridge University Press, Cambridge (1994)CrossRefzbMATHGoogle Scholar
  3. 3.
    Căzănescu, V.E., Rosu, G.: Weak inclusion systems. Math. Struct. Comput. Sci. 7(2), 195–206 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Codescu, M., Mossakowski, T.: Heterogeneous colimits. In: Boulanger, F., Gaston, C., Schobbens, P.-Y. (ed.) MoVaH 2008 Workshop. IEEE Press (2008)Google Scholar
  5. 5.
    Diaconescu, R.: Institution-Independent Model Theory. Birkhäuser, Basel (2008)zbMATHGoogle Scholar
  6. 6.
    Diaconescu, R., Goguen, J.A., Stefaneas, P.: Logical support for modularisation. In: 2nd Workshop on Logical Environments, pp. 83–130. CUP, New York (1993)Google Scholar
  7. 7.
    Goguen, J.A.: A categorical manifesto. Math. Struct. Comput. Sci. 1, 49–67 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification and programming. J. ACM 39, 95–146 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    W3C SEmantic Web Deployment Working Group. Best practice recipes for publishing RDF vocabularies. W3C Working Group Note, 28 August 2008. http://www.w3.org/TR/2008/NOTE-swbp-vocab-pub-20080828/
  10. 10.
    Kutz, O., Bateman, J., Mossakowski, T., Neuhaus, F., Bhatt, M.: E pluribus unum - formalisation, use-cases, and computational support for conceptual blending. In: Besold, T.R., Schorlemmer, M., Smaill, A. (eds.) Computational Creativity Research: Towards Creative Machines. Atlantis Thinking Machines, vol. 7, pp. 167–196. Atlantis Press (2015)Google Scholar
  11. 11.
    Mossakowski, T.: Colimits of order-sorted specifications. In: Presicce, F.P. (ed.) WADT 1997. LNCS, vol. 1376, pp. 316–332. Springer, Heidelberg (1998).  https://doi.org/10.1007/3-540-64299-4_42 CrossRefGoogle Scholar
  12. 12.
    Mossakowski, T.: Specifications in an arbitrary institution with symbols. In: Bert, D., Choppy, C., Mosses, P.D. (eds.) WADT 1999. LNCS, vol. 1827, pp. 252–270. Springer, Heidelberg (2000).  https://doi.org/10.1007/978-3-540-44616-3_15 CrossRefGoogle Scholar
  13. 13.
    Mossakowski, T., Maeder, C., Lüttich, K.: The heterogeneous tool set, Hets. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-71209-1_40 CrossRefGoogle Scholar
  14. 14.
    Mossakowski, T., Kutz, O., Codescu, M., Lange, C.: The distributed ontology, modeling and specification language. In: Del Vescovo, C., Hahmann, T., Pearce, D., Walther, D. (eds) WoMo 2013, CEUR-WS Online Proceedings, vol. 1081 (2013)Google Scholar
  15. 15.
    Mossakowski, T., Tarlecki, A.: Heterogeneous logical environments for distributed specifications. In: Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486, pp. 266–289. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03429-9_18 CrossRefGoogle Scholar
  16. 16.
    Mosses, P.D. (ed.): Casl Reference Manual. LNCS, vol. 2960. Springer, Heidelberg (2004).  https://doi.org/10.1007/b96103 zbMATHGoogle Scholar
  17. 17.
    Object Management Group: The distributed ontology, modeling, and specification language (DOL) 2015. OMG draft standard: http://www.omg.org/spec/DOL/
  18. 18.
    Rabe, F.: How to Identify, Translate, and Combine Logics? J. Logic Comput. (2014).  https://doi.org/10.1093/logcom/exu079
  19. 19.
    Sannella, D., Tarlecki, A.: Specifications in an arbitrary institution. Inf. Comput. 76, 165–210 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Schröder, L., Mossakowski, T.: Hascasl: integrated higher-order specification and program development. Theor. Comput. Sci. 410(12–13), 1217–1260 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Schultz, P., Spivak, D.I., Vasilakopoulou, C., Wisnesky, R.: Algebraic databases. CoRR, abs/1602.03501 (2016)Google Scholar
  22. 22.
    Smith, D.R.: Composition by colimit and formal software development. In: Futatsugi, K., Jouannaud, J.-P., Meseguer, J. (eds.) Algebra, Meaning, and Computation. LNCS, vol. 4060, pp. 317–332. Springer, Heidelberg (2006).  https://doi.org/10.1007/11780274_17 CrossRefGoogle Scholar
  23. 23.
    Tarlecki, A., Burstall, R.M., Goguen, J.A.: Some fundamental algebraic tools for the semantics of computation: Part 3: indexed categories. Theor. Comput. Sci. 91(2), 239–264 (1991)CrossRefzbMATHGoogle Scholar
  24. 24.
    Williamson, K.E., Healy, M., Barker, R.A.: Industrial applications of software synthesis via category theory-case studies using specware. Autom. Softw. Eng. 8(1), 7–30 (2001)CrossRefzbMATHGoogle Scholar
  25. 25.
    Zimmermann, A., Krötzsch, M., Euzenat, J., Hitzler, P.: Formalizing ontology alignment and its operations with category theory. In: Proceedings of FOIS-2006, pp. 277–288 (2006)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  1. 1.Otto-von-Guericke-University of MagdeburgMagdeburgGermany
  2. 2.Jacobs University BremenBremenGermany
  3. 3.Free University of Bozen-BolzanoBolzanoItaly

Personalised recommendations