Toxicogenomics: A New Paradigm for Nanotoxicity Evaluation

  • Sourabh Dwivedi
  • Quaiser Saquib
  • Bilal Ahmad
  • Sabiha M. Ansari
  • Ameer Azam
  • Javed MusarratEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1048)


The wider applications of nanoparticles (NPs) has evoked a world-wide concern due to their possible risk of toxicity in humans and other organisms. Aggregation and accumulation of NPs into cell leads to their interaction with biological macromolecules including proteins, nucleic acids and cellular organelles, which eventually induce toxicological effects. Application of toxicogenomics to investigate molecular pathway-based toxicological consequences has opened new vistas in nanotoxicology research. Indeed, genomic approaches appeared as a new paradigm in terms of providing information at molecular levels and have been proven to be as a powerful tool for identification and quantification of global shifts in gene expression. Toxicological responses of NPs have been discussed in this chapter with the aim to provide a clear understanding of the molecular mechanism of NPs induced toxicity both in in vivo and in vitro test models.


Nanoparticles Toxicogenomics Oxidative stress RNA-Seq Microarray 



SD gratefully acknowledge the financial support given by CSIR, New Delhi, India. The authors extend their appreciation to the International Scientific Partnership Program ISPP at King Saud University for funding this research work through ISPP# 0031.


  1. 1.
    Oberdorster G, Maynard A, Donaldson K et al (2005) A report from the ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group. Principles for characterizing the potential human health effects from exposure: elements of screening strategy. Part Fibre Toxicol 6:2–8Google Scholar
  2. 2.
    Hoet PHM, Brüske-Hohlfeld I, Salata OV (2004) Nanoparticles: known and unknown health risks. J Nanobiotechnol 8:1–12Google Scholar
  3. 3.
    Salata O (2004) Applications of nanoparticles in biology and medicine. Nano Biotechnol 2:3Google Scholar
  4. 4.
    Wang K, Xu JJ, Chen HY (2005) A novel glucose biosensor based on the nanoscaled cobalt phthalocyanine-glucose oxidase biocomposite. Biosens Bioelectron 20:1388–1396CrossRefPubMedGoogle Scholar
  5. 5.
    Yang MH, Jiang JH, Yang YH et al (2006) Carbon nanotube/cobalt hexacyanoferrate nanoparticle biopolymer system for the fabrication of biosensors. Biosens Bioelectron 21:1791–1797CrossRefPubMedGoogle Scholar
  6. 6.
    Chen M, Zhang M, Borlak J et al (2012) A decade of toxicogenomic research and its contribution to toxicological science. Toxicol Sci 130:217–228CrossRefPubMedGoogle Scholar
  7. 7.
    Ivask A, Bondarenko O, Jepihhina N et al (2010) Profiling of the reactive oxygen species-related ecotoxicity of CuO, ZnO, TiO2, silver and fullerene nanoparticles using a set of recombinant luminescent Escherichia coli strains: differentiating the impact of particles and solubilised metals. Anal Bioanal Chem 398:701–716CrossRefPubMedGoogle Scholar
  8. 8.
    Pujalté I, Passagne I, Brouillaud B et al (2011) Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Part Fibre Toxicol 8:10–26CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Griffitt TJ, Weil R, Hyndman KA et al (2007) Exposure to copper nanoparticles causes injury and acute lethality in zebrafish (Danio rerio). Environ Sci Technol 41:8178–8186CrossRefPubMedGoogle Scholar
  10. 10.
    Nair PMG, Choi J (2011) Characterization of a ribosomal protein L15 cDNA from Chironomus riparius (Diptera; Chironomidae): transcriptional regulation by cadmium and silver nanoparticles. Comp Biochem Physiol B Biochem Mol Biol 159:157–162CrossRefPubMedGoogle Scholar
  11. 11.
    Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Donaldson K, Tran CL (2002) Inflammation caused by particles and fibers. Inhal Toxicol 14:5–27CrossRefPubMedGoogle Scholar
  13. 13.
    Kumar A, Dhawan A (2013) Genotoxic and carcinogenic potential of engineered nanoparticles: an update. Arch Toxicol 87(11):1883–1900CrossRefPubMedGoogle Scholar
  14. 14.
    Duan J, Yu Y, Li Y et al (2013) Cardiovascular toxicity evaluation of silica nanoparticles in endothelial cells and zebrafish model. Biomaterials 34(23):5853–5862CrossRefPubMedGoogle Scholar
  15. 15.
    Khatri M, Bello D, Gaines P et al (2013) Nanoparticles from photocopiers induce oxidative stress and upper respiratory tract inflammation in healthy volunteers. Nanotoxicology 7(5):1014–1027CrossRefPubMedGoogle Scholar
  16. 16.
    Shin JA, Lee EJ, Seo SM et al Nanosized titanium dioxide enhanced inflammatory responses in the septic brain of mouse. Neuroscience 165(2):445–454Google Scholar
  17. 17.
    Smita S, Gupta S, Bartonova A et al (2012) Nanoparticles in the environment: assessment using the causal diagram approach. Environ Health 11:S13CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Chinta SJ, Andersen JK (2008) Redox imbalance in Parkinson’s disease. Biochim Biophys Acta 1780(11):1362–1367CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Husain M, Saber AT, Guo C et al (2013) Pulmonary instillation of low doses of titanium dioxide nanoparticles in mice leads to particle retention and gene expression changes in the absence of inflammation. Toxicol Appl Pharmacol 269:250–262CrossRefPubMedGoogle Scholar
  20. 20.
    AshaRani P, Hande MP, Valiyaveettil S (2009) Anti-proliferative activity of silver nanoparticles. BMC Cell Biol 10:65CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kedziorek DA, Muja N, Walczak P et al (2010) Gene expression profiling reveals early cellular responses to intracellular magnetic labeling with superparamagnetic iron oxide nanoparticles. Magn Reson Med 63:1031–1043CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Li X, He Q, Shi J (2014) Global gene expression analysis of cellular death mechanisms induced by mesoporous silica nanoparticle-based drug delivery system. ACS Nano 8:1309–1320CrossRefPubMedGoogle Scholar
  23. 23.
    Foldbjerg R, Irving ES, Hayashi Y et al (2012) Global gene expression profiling of human lung epithelial cells after exposure to nanosilver. Toxicol Sci 130:145–157CrossRefPubMedGoogle Scholar
  24. 24.
    Liu Y, Wang J (2013) Effects of DMSA-coated Fe3O4 nanoparticles on the transcription of genes related to iron and osmosis homeostasis. Toxicol Sci 131:521–536CrossRefPubMedGoogle Scholar
  25. 25.
    Van Aerle R, Lange A, Moorhouse A et al (2013) Molecular mechanisms of toxicity of silver nanoparticles in zebrafish embryos. Environ Sci Technol 47(14):8005–8014CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Andersen ME, Krewski D (2009) Toxicity testing in the 21st century: bringing the vision to life. Toxicol Sci 107(2):324–330CrossRefPubMedGoogle Scholar
  27. 27.
    Yang H, Liu C, Yang D et al (2009) Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol 29(1):69–78CrossRefPubMedGoogle Scholar
  28. 28.
    Van Hummelen P, Sasaki J (2010) State-of-the-art genomics approaches in toxicology. Mutat Res 705(3):165–171CrossRefPubMedGoogle Scholar
  29. 29.
    Wang Z, Gerstein M, Snyder M (2009) RNA-seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Costa PM, Fadeel B (2016) Emerging systems biology approaches in nanotoxicology: towards a mechanism-based understanding of nanomaterial hazard and risk. Toxicol Appl Pharmacol 299:101–111CrossRefPubMedGoogle Scholar
  31. 31.
    González-Ballester D, Casero D, Cokus S et al (2010) RNA-seq analysis of sulfur-deprived Chlamydomonas cells reveals aspects of acclimation critical for cell survival. Plant Cell 22:2058–2084CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Miller R, Wu G, Deshpande RR et al (2010) Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism. Plant Physiol 154:1737–1752CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Maier T, Guell M, Serrano L (2009) Correlation of mRNA and protein in complex biological samples. FEBS Lett 583:3966–3973CrossRefPubMedGoogle Scholar
  34. 34.
    De Sousa Abreu R, Penalva LO, Marcotte E et al (2009) Global signatures of protein and mRNA expression levels. Mol BioSyst 5:1512–1526PubMedGoogle Scholar
  35. 35.
    Simon DF, Domingos RF, Hauser C et al (2013) Transcriptome sequencing (RNA-seq) analysis of the effects of metal nanoparticle exposure on the transcriptome of Chlamydomonas reinhardtii. Appl Environ Microbiol 79(16):4774–4785CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Lucafò M, Gerdol M, Pallavicini A et al (2013) Profiling the molecular mechanism of fullerene cytotoxicity on tumor cells by RNA-seq. Toxicology 314(1):183–192. CrossRefPubMedGoogle Scholar
  37. 37.
    Yang H, Kozicky L, Saferali A et al (2016) Endosomal pH modulation by peptide-gold nanoparticle hybrids enables potent anti-inflammatory activity in phagocytic immune cells. Biomaterials 111:90–102. CrossRefPubMedGoogle Scholar
  38. 38.
    Ambrosone A, Scotto di Vettimo MR, Malvindi MA et al (2014) Impact of amorphous SiO2 nanoparticles on a living organism: morphological, behavioral, and molecular biology implications. Front Bioeng Biotechnol 2:37CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Tian JH, Hu JS, Li FC et al (2016) Effects of TiO2 nanoparticles on nutrition metabolism in silkworm fat body. Biol Open 5(6):764–769. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Novo M, Lahive E, Díez-Ortiz M et al (2015) Different routes, same pathways: molecular mechanisms under silver ion and nanoparticle exposures in the soil sentinel Eisenia fetida. Environ Pollut 205:385–393CrossRefPubMedGoogle Scholar
  41. 41.
    Mitra M, Dilnawaz F, Misra R et al (2011) Toxicogenomics of nanoparticulate delivery of etoposide: potential impact on nanotechnology in retinoblastoma therapy. Cancer Nanotechnol 2(1–6):21–36CrossRefPubMedGoogle Scholar
  42. 42.
    Chou CC, Hsiao HY, Hong QS et al (2008) Single-walled carbon nanotubes can induce pulmonary injury in mouse model. Nano Lett 8(2):437–445CrossRefPubMedGoogle Scholar
  43. 43.
    Lim DH, Jang J, Kim S et al (2012) The effects of sub-lethal concentrations of silver nanoparticles on inflammatory and stress genes in human macrophages using cDNA microarray analysis. Biomaterials 33(18):4690–4699CrossRefPubMedGoogle Scholar
  44. 44.
    Waters KM, Masiello LM, Zangar RC et al (2009) Macrophage responses to silica nanoparticles are highly conserved across particle sizes. Toxicol Sci 107(2):553–569CrossRefPubMedGoogle Scholar
  45. 45.
    Zhang L, Wang X, Zou J et al (2015) Effects of an 11-nm DMSA-coated iron nanoparticle on the gene expression profile of two human cell lines, THP-1 and HepG2. J Nanobiotechnol 13:3. CrossRefGoogle Scholar
  46. 46.
    Ding L, Stilwell J, Zhang T et al (2005) Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast. Nano Lett 5(12):2448–2464CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Long TC, Tajuba J, Sama P et al (2007) Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Environ Health Perspect 115(11):1631–1637CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Van der Zande M, Vandebriel RJ, Groot MJ et al (2014) Sub-chronic toxicity study in rats orally exposed to nanostructured silica. Part Fibre Toxicol 11:8CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Osmond-McLeod MJ, Oytam Y, Rowe A et al (2016) Long-term exposure to commercially available sunscreens containing nanoparticles of TiO2 and ZnO revealed no biological impact in a hairless mouse model. Part Fibre Toxicol 13(1):44CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Busch W, Kühnel D, Schirmer K et al (2010) Tungsten carbide cobalt nanoparticles exert hypoxia-like effects on the gene expression level in human keratinocytes. BMC Genomics 11:65CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Pisani C, Gaillard JC, Nouvel V et al (2015) High-throughput, quantitative assessment of the effects of low-dose silica nanoparticles on lung cells: grasping complex toxicity with a great depth of field. BMC Genomics 16:315CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Fisichella M, Berenguer F, Steinmetz G et al (2014) Toxicity evaluation of manufactured CeO2 nanoparticles before and after alteration: combined physicochemical and whole-genome expression analysis in Caco-2 cells. BMC Genomics 15:700CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Fisichella M, Berenguer F, Steinmetz G et al (2012) Intestinal toxicity evaluation of TiO2 degraded surface-treated nanoparticles: a combined physico-chemical and toxicogenomics approach in caco-2 cells. Part Fibre Toxicol 9:18CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Li X, Zhang C, Zhang X et al (2016) An acetyl-L-carnitine switch on mitochondrial dysfunction and rescue in the metabolomics study on aluminum oxide nanoparticles. Part Fibre Toxicol 13:4. CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Sahu SC, Zheng J, Yourick JJ et al (2015) Toxicogenomic responses of human liver HepG2 cells to silver nanoparticles. J Appl Toxicol 35(10):1160–1168CrossRefPubMedGoogle Scholar
  56. 56.
    Halappanavar S, Saber AT, Decan N et al (2015) Transcriptional profiling identifies physicochemical properties of nanomaterials that are determinants of the in vivo pulmonary response. Environ Mol Mutagen 56:245–264CrossRefPubMedGoogle Scholar
  57. 57.
    Ali K, Qais FA, Dwivedi S et al (2017) Titanium dioxide nanoparticles preferentially bind in subdomains IB, IIA of HSA and minor groove of DNA. J Biomol Struct Dyn.
  58. 58.
    Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21(10):1166–1170CrossRefPubMedGoogle Scholar
  59. 59.
    Mohamed BM, Verma NK, Prina-Mello A et al (2011) Activation of stress-related signalling pathway in human cells upon SiO2 nanoparticles exposure as an early indicator of cytotoxicity. J Nanobiotechnol 9:29CrossRefGoogle Scholar
  60. 60.
    Perkins TN, Shukla A, Peeters PM et al (2012) Differences in gene expression and cytokine production by crystalline vs. amorphous silica in human lung epithelial cells. Part Fibre Toxicol 9(1):6CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Reuzel PG, Bruijntjes JP, Feron VJ et al (1991) Subchronic inhalation toxicity of amorphous silicas and quartz dust in rats. Food Chem Toxicol 29(5):341–354CrossRefPubMedGoogle Scholar
  62. 62.
    Xu Z, Wang SL, Gao HW (2010) Effects of nano-sized silicon dioxide on the structures and activities of three functional proteins. J Hazard Mater 180(1–3):375–383CrossRefPubMedGoogle Scholar
  63. 63.
    Rabolli V, Thomassen LC, Princen C et al (2010) Influence of size, surface area and microporosity on the in vitro cytotoxic activity of amorphous silica nanoparticles in different cell types. Nanotoxicology 4(3):307–318CrossRefPubMedGoogle Scholar
  64. 64.
    Salata O (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2:3CrossRefGoogle Scholar
  65. 65.
    Pirmohamed T, Dowding JM, Singh S et al (n.d.) Nanoceria exhibit redox state dependent catalase mimetic activity. Chem Commun (Camb) 46:2736–2738Google Scholar
  66. 66.
    Heckert EG, Karakoti AS, Seal S et al (2008) The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials 29:2705–2709CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Kong L, Cai X, Zhou X et al (2011) Nanoceria extend photoreceptor cell lifespan in tubby mice by modulation of apoptosis/survival signaling pathways. Neurobiol Dis 42:514–523CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Schubert D, Dargusch R, Raitano J et al (2006) Cerium andyttrium oxide nanoparticles are neuroprotective. Biochem Biophys Res Commun 342:86–91CrossRefPubMedGoogle Scholar
  69. 69.
    Cheng G, Guo W, Han L et al (2013) Cerium oxide nanoparticles induce cytotoxicity in human hepatoma SMMC-7721 cells via oxidative stress and the activation of MAPK signaling pathways. Toxicol in Vitro 27:1082–1088CrossRefPubMedGoogle Scholar
  70. 70.
    Wijnhoven SWP, Peijnenburg WJGM, Herberts CA et al (2009) Nano-silver – a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3:109–138CrossRefGoogle Scholar
  71. 71.
    Sotiriou GA, Pratsinis SE (2010) Antibacterial activity of nanosilver ions and particles. Environ Sci Technol 44:5649–5654CrossRefPubMedGoogle Scholar
  72. 72.
    Sotiriou GA, Pratsinis SE (2011) Engineering nanosilver as an antibacterial, biosensor and bioimaging material. Curr Opin Chem Eng 1(1):3–10CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Dwivedi S, Saquib Q, Al-Khedhairy AA et al (2015) Rhamnolipids functionalized AgNPs-induced oxidative stress and modulation of toxicity pathway genes in cultured MCF-7 cells. Colloids Surf B: Biointerfaces 132:290–298CrossRefPubMedGoogle Scholar
  74. 74.
    Morones JR, Elechiguerra JL, Camacho A et al (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353CrossRefPubMedGoogle Scholar
  75. 75.
    Xiu ZM, Zhang QB, Puppala HL et al (2012) Negligible particle specific antibacterial activity of silver nanoparticles. Nano Lett 12:4271–4275CrossRefPubMedGoogle Scholar
  76. 76.
    Stebounova LV, Adamcakova-Dodd A, Kim JS et al (2011) Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model. Part Fibre Toxicol 8:5CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Song KS, Sung JH, Ji JH et al (2012) Recovery from silver-nanoparticle exposure- induced lung inflammation and lung function changes in Sprague Dawley rats. Nanotoxicology 7:169–180CrossRefPubMedGoogle Scholar
  78. 78.
    Sung JH, Ji JH, Yoon JU et al (2008) Lung function changes in Sprague–Dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhal Toxicol 20:567–574CrossRefPubMedGoogle Scholar
  79. 79.
    Sung JH, Ji JH, Park JD et al (2009) Subchronic inhalation toxicity of silver nanoparticles. Toxicol Sci 108:452–461CrossRefPubMedGoogle Scholar
  80. 80.
    Ma R, Levard C, Marinakos SM et al (2012) Size-controlled dissolution of organic-coated silver nanoparticles. Environ Sci Technol 46:752–759CrossRefPubMedGoogle Scholar
  81. 81.
    Leo BF, Chen S, Kyo Y et al (2013) The stability of silver nanoparticles in a model of pulmonary surfactant. Environ Sci Technol 47:11232–11240CrossRefPubMedGoogle Scholar
  82. 82.
    Stebounova LV, Guio E, Grassian VH (2011) Silver nanoparticles in simulated biological media: a study of aggregation, sedimentation, and dissolution. J Nanopart Res 13:12CrossRefGoogle Scholar
  83. 83.
    Kent RD, Vikesland PJ (2012) Controlled evaluation of silver nanoparticles dissolution using atomic force microscopy. Environ Sci Technol 46:6977–6984CrossRefPubMedGoogle Scholar
  84. 84.
    Zook JM, Long SE, Cleveland D et al (2011) Measuring silver nanoparticle dissolution in complex biological and environmental matrices using UV-visible absorbance. Anal Bioanal Chem 401:1993–2002CrossRefPubMedGoogle Scholar
  85. 85.
    Pratsinis A, Hervella P, Leroux JC et al (2013) Toxicity of silver nanoparticles in macrophages. Small 9:2576–2584CrossRefPubMedGoogle Scholar
  86. 86.
    Lubick N (2008) Nanosilver toxicity: ions, nanoparticles–or both? Environ Sci Technol 42:8617CrossRefPubMedGoogle Scholar
  87. 87.
    Park EJ, Yi J, Kim Y et al (2010) Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol in Vitro 24:872–878CrossRefPubMedGoogle Scholar
  88. 88.
    Limbach LK, Wick P, Manser P et al (2007) Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 41:4158–4163CrossRefPubMedGoogle Scholar
  89. 89.
    Lam CW, James JT, McCluskey R et al (2004) Pulmonary toxicity of singlewall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126–134CrossRefPubMedGoogle Scholar
  90. 90.
    Sargent L, Reynolds S, Castranova V (2010) Potential pulmonary effects of engineered carbon nanotubes: in vitro genotoxic effects. Nanotoxicology 4:396–408CrossRefPubMedGoogle Scholar
  91. 91.
    Shvedova AA, Pietroiusti A, Fadeel B et al (2012) Mechanisms of carbon nanotube-induced toxicity: focus on oxidative stress. Toxicol Appl Pharmacol 261:121–133CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Sund J, Alenius H, Vippola M et al (2011) Proteomic characterization of engineered nanomaterial–protein interactions in relation to surface reactivity. ACS Nano 5:4300–4309CrossRefPubMedGoogle Scholar
  93. 93.
    Jaurand MC, Renier A, Daubriac J (2009) Mesothelioma: do asbestos and carbon nanotubes pose the same health risk? Part Fibre Toxicol 6:1–14CrossRefGoogle Scholar
  94. 94.
    Fenoglio I, Greco G, Tomatis M et al (2008) Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: physicochemical aspects. Chem Res Toxicol 21:1690–1697CrossRefPubMedGoogle Scholar
  95. 95.
    Jacobsen NR, Pojana G, White P et al (2008) Genotoxicity, cytotoxicity, and reactive oxygen species induced by single-walled carbon nanotubes and C60 fullerenes in the FE1-Muta™Mouse lung epithelial cells. Environ Mol Mutagen 49:476–487CrossRefPubMedGoogle Scholar
  96. 96.
    Saquib Q, Al-Khedhairy AA, Ahmad J et al (2013) Zinc ferrite nanoparticles activate IL-1b, NFKB1, CCL21 and NOS2 signaling to induce mitochondrial dependent intrinsic apoptotic pathway in WISH cells. Toxicol Appl Pharmacol 273(2):289–297CrossRefPubMedGoogle Scholar
  97. 97.
    Musarrat J, Saquib Q, Azam A et al (2009) Zinc oxide nanoparticles-induced DNA damage in human lymphocytes. Int J Nanopart 2(1/2/3/4/5/6):402–415CrossRefGoogle Scholar
  98. 98.
    Wahab R, Khan F, Yang YB et al (2016) Zinc oxide quantum dots: multifunctional candidates for arresting the C2C12 cancer cells and their role towards caspase 3 and 7 genes. RSC Adv 6:26111–26120CrossRefGoogle Scholar
  99. 99.
    Wahab R, Siddiqui MA, Saquib Q et al (2014) ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity. Colloids Surf B: Biointerfaces 117:267–276CrossRefPubMedGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Sourabh Dwivedi
    • 1
  • Quaiser Saquib
    • 2
  • Bilal Ahmad
    • 3
  • Sabiha M. Ansari
    • 4
  • Ameer Azam
    • 1
  • Javed Musarrat
    • 3
    • 5
    Email author
  1. 1.Department of Applied Physics, Faculty of Engineering and TechnologyAligarh Muslim UniversityAligarhIndia
  2. 2.Zoology Department, College of SciencesKing Saud UniversityRiyadhSaudi Arabia
  3. 3.Department of Agricultural Microbiology, Faculty of Agricultural SciencesAligarh Muslim UniversityAligarhIndia
  4. 4.Department of Botany and Microbiology, College of SciencesKing Saud UniversityRiyadhSaudi Arabia
  5. 5.Department of Biosciences and BiotechnologyBaba Ghulam Shah Badshah UniversityRajouriIndia

Personalised recommendations