Advertisement

Evolutionary Relationships Among the Oryza Species

Chapter
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

Despite being highly studied, the evolutionary relationships in the Oryza genus have remained inconsistent and inconclusive. The origin and domestication history of Asian rice has particularly remained contentious. This chapter discusses the evolutionary relationships between various species in the Oryza genus, with a special focus on the application of current advances in genomics in understanding the various evolutionary dynamics. Advances in genomics are offering opportunities for resolving the origin of cultivated rice and clarifying phylogenetic and evolutionary relationships between the various Oryza species. Analysis of genomes of cultivated rice and their putative progenitors is providing useful information such as unusually diverged genomic regions, which provides vital insights into rice evolution, domestication and demographic history. However, with the increase in whole genome sequence data, it appears that data analysis and subsequent interpretation may now present the next challenge in efforts aimed at resolving this hot debate. The use of nuclear and whole chloroplast genome sequences is helping define the relationships between the recent newly discovered Australian taxa which are believed to be novel gene pools. In this chapter, we have also discussed the challenges faced in efforts aimed at resolving evolutionary relationships in the Oryza genus.

References

  1. Ammiraju JS, Lu F, Sanyal A, Yu Y, Song X, Jiang N, Pontaroli AC, Rambo T, Currie J, Collura K, Talag J, Fan C, Goicoechea JL, Zuccolo A, Chen J, Bennetzen JL, Chen M, Jackson S, Wing RA (2008) Dynamic evolution of Oryza genomes is revealed by comparative genomic analysis of a genus-wide vertical data set. Plant Cell 20:3191–3209CrossRefPubMedPubMedCentralGoogle Scholar
  2. Asaf S, Waqas M, Khan AL, Khan MA, Kang S-M, Imran QM, Shahzad R, Bilal S, Yun B-W, Lee I-J (2017) The complete chloroplast genome of wild rice (Oryza minuta) and its comparison to related species. Front Plant Sci 8:304CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bres-Patry C, Lorieux M, Clément G, Bangratz M, Ghesquière A (2001) Heredity and genetic mapping of domestication-related traits in a temperate japonica weedy rice. Int J Plant Breed Res 102:118–126Google Scholar
  4. Brozynska M, Omar ES, Furtado A, Crayn D, Simon B, Ishikawa R, Henry RJ (2014) Chloroplast genome of novel rice germplasm identified in Northern Australia. Trop. Plant Biol. 7:111–120CrossRefPubMedPubMedCentralGoogle Scholar
  5. Brozynska M, Copetti D, Furtado A, Wing RA, Crayn D, Fox G, Ishikawa R, Henry RJ (2017) Sequencing of Australian wild rice genomes reveals ancestral relationships with domesticated rice. Plant Biotechnol J. 15:765–774CrossRefPubMedPubMedCentralGoogle Scholar
  6. C-c Yang, Kawahara Y, Mizuno H, Wu J, Matsumoto T, Itoh T (2012) Independent domestication of Asian rice followed by gene flow from japonica to indica. Mol Biol Evol 29:1471–1479CrossRefGoogle Scholar
  7. Chen J, Liang C, Chen C, Zhang W, Sun S, Liao Y, Zhang X, Yang L, Song C, Wang M, Shi J, Huang Q, Liu G, Liu J, Zhou H, Zhou W, Yu Q, An N, Chen Y, Cai Q, Wang B, Liu B, Gao D, Min J, Huang Y, Wu H, Li Z, Zhang Y, Yin Y, Song W, Jiang J, Jackson SA, Wing RA, Wang J, Wang J, Chen M, Lang Y, Liu T, Li B, Bai Z, Luis Goicoechea J (2013) Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution. Nat. Commun. 4:1595CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cheng C, Tsuchimoto S, Ohtsubo H, Ohtsubo E (2002) Evolutionary relationships among rice species with AA genome based on SINE insertion analysis. Genes Genet Syst 77:323–334CrossRefPubMedGoogle Scholar
  9. Cheng C, Motohashi R, Tsuchimoto S, Fukuta Y, Ohtsubo H, Ohtsubo E (2003) Polyphyletic origin of cultivated rice: based on the interspersion pattern of SINEs. Mol Biol Evol 20:67–75CrossRefPubMedGoogle Scholar
  10. Choi JY, Platts AE, Fuller DQ, Hsing Y-I, Wing RA, Purugganan MD (2017) The rice paradox: multiple origins but single domestication in Asian rice. Mol Biol Evol 34:969–979PubMedPubMedCentralGoogle Scholar
  11. Civan P, Craig H, Cox CJ, Brown TA (2015) Three geographically separate domestications of Asian rice. Nat Plants 1:15164CrossRefPubMedPubMedCentralGoogle Scholar
  12. Eisen J, Fraser C (2003) Phylogenomics: intersection of evolution and genomics. In: Eisen JA (ed) Science. pp 1706–1707Google Scholar
  13. Frédéric D, Henner B, Hervé P (2005) Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet 6:361Google Scholar
  14. Federici MT, Shcherban AB, Capdevielle F, Francis M, Vaughan D (2002) Analysis of genetic diversity in the Oryza officinalis complex. Electron J Biotechnol 5:16–17CrossRefGoogle Scholar
  15. Fuller D, Sato Y-I, Castillo C, Qin L, Weisskopf A, Kingwell-Banham E, Song J, Ahn S-M, van Etten J (2010) Consilience of genetics and archaeobotany in the entangled history of rice. Archaeol Anthropol Sci 2:115–131CrossRefGoogle Scholar
  16. Ge S, Sang T, Lu B-R, Hong D-Y (1999) Phylogeny of rice genomes with emphasis on origins of allotetraploid species. Proc Natl Acad Sci USA 96:14400–14405CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gong Y, Borromeo T, Lu B (2000) A biosystematics study of the Oryza meyeriana complex (Poaceae). Plant Syst Evol 224:139–151CrossRefGoogle Scholar
  18. Gronau I, Hubisz M, Gulko B, Danko C, Siepel A (2011) Bayesian inference of ancient human demography from individual genome sequences. Nat Genet 43:1031CrossRefPubMedPubMedCentralGoogle Scholar
  19. He Z, Shi S, Zhai W, Wen H, Tang T, Wang Y, Lu X, Greenberg AJ, Hudson RR, Wu C-I (2011) Two evolutionary histories in the genome of rice: the roles of domestication genes. PLoS Genet 7:e1002100CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hu FY, Tao DY, Sacks E, Fu BY, Xu P, Li J, Yang Y, Mcnally K, Khush GS, Paterson AH, Li ZK (2003) Convergent evolution of perenniality in rice and sorghum. Proc Natl Acad Sci USA 100:4050CrossRefPubMedPubMedCentralGoogle Scholar
  21. Huang X, Li W, Guo Y, Lu Y, Zhou C, Fan D, Weng Q, Zhu C, Huang T, Zhang L, Wang Y, Kurata N, Feng L, Furuumi H, Kubo T, Miyabayashi T, Yuan X, Xu Q, Dong G, Zhan Q, Li C, Fujiyama A, Wei X, Toyoda A, Lu T, Feng Q, Qian Q, Li J, Han B, Wang Z-X, Wang A, Zhao Q, Zhao Y, Liu K, Lu H (2012) A map of rice genome variation reveals the origin of cultivated rice. Nature 490:497CrossRefPubMedGoogle Scholar
  22. IRGSP (2005) The map-based sequence of the rice genome. Nature 436:793–800CrossRefGoogle Scholar
  23. Iwamoto M, Nagashima H, Nagamine T, Higo H, Higo K (1999) p-SINE1-like intron of the CatA catalase homologs and phylogenetic relationships among AA-genome Oryza and related species. Theor Appl Genet 98:853–861CrossRefGoogle Scholar
  24. Jason PL, Yu-Chung C, Kuo-Hsiang H, Tzen-Yuh C, Barbara AS (2006) Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Proc Natl Acad Sci USA 103:9578–9583CrossRefGoogle Scholar
  25. Jeffrey R-I, Brandon SG (2008) Multiple domestications do not appear monophyletic. Proc Natl Acad Sci USA 105:E105CrossRefGoogle Scholar
  26. Khush GS (1997) Origin, dispersal, cultivation and variation of rice. Plant Mol Biol 35:25–34CrossRefPubMedGoogle Scholar
  27. Kubatko LS, Degnan JH (2007) Inconsistency of phylogenetic estimates from concatenated data under coalescence. Syst Biol 56:17–24CrossRefPubMedGoogle Scholar
  28. Kumagai M, Wang L, Ueda S (2010) Genetic diversity and evolutionary relationships in genus Oryza revealed by using highly variable regions of chloroplast DNA. Gene 462:44–51CrossRefPubMedGoogle Scholar
  29. Kumar S, Hedges SB (1998) A molecular timescale for vertebrate evolution. Nature 392:917–920CrossRefPubMedGoogle Scholar
  30. Li C, Zhou A, Sang T (2006) Rice domestication by reducing shattering. Science 311:1936–1939CrossRefPubMedGoogle Scholar
  31. Li ZM, Zheng XM, Ge S (2011) Genetic diversity and domestication history of African rice (Oryza glaberrima) as inferred from multiple gene sequences. Theor Appl Genet 123:21–31CrossRefPubMedGoogle Scholar
  32. Liu F, Tembrock RL, Sun C, Han G, Guo C, Wu Z (2016) The complete plastid genome of the wild rice species Oryza brachyantha (Poaceae). Mitochondrial DNA B Resour 1:218–219CrossRefGoogle Scholar
  33. Lu BR, Zheng KL, Qian HR, Zhuang JY (2002) Genetic differentiation of wild relatives of rice as assessed by RFLP analysis. Theor Appl Genet 106:101–106CrossRefPubMedGoogle Scholar
  34. Ma J, Bennetzen JL (2004) Rapid recent growth and divergence of rice nuclear genomes. Proc Natl Acad Sci USA 101:12404–12410CrossRefPubMedPubMedCentralGoogle Scholar
  35. Mariac C, Sabot F, Santoni S, Vigouroux Y, Couvreur TLP, Scarcelli N, Pouzadou J, Barnaud A, Billot C, Faye A, Kougbeadjo A, Maillol V, Martin G (2014) Cost-effective enrichment hybridization capture of chloroplast genomes at deep multiplexing levels for population genetics and phylogeography studies. Mol Ecol ResourGoogle Scholar
  36. Meyer RS, Purugganan MD (2013) Evolution of crop species: genetics of domestication and diversification. Nature Rev Genet 14:840–852CrossRefPubMedGoogle Scholar
  37. Meyer RS, Choi JY, Sanches M, Plessis A, Flowers JM, Amas J, Dorph K, Barretto A, Gross B, Fuller DQ, Bimpong IK, Ndjiondjop M-N, Hazzouri KM, Gregorio GB, Purugganan MD (2016) Domestication history and geographical adaptation inferred from a SNP map of African rice. Nat Genet 48:1083–1088CrossRefPubMedGoogle Scholar
  38. Molina J, Sikora M, Garud N, Flowers JM, Rubinstein S, Reynolds A, Huang P, Jackson S, Schaal BA, Bustamante CD, Boyko AR, Purugganan MD (2011) Molecular evidence for a single evolutionary origin of domesticated rice. Proc Natl Acad Sci USA 108:8351–8356CrossRefPubMedPubMedCentralGoogle Scholar
  39. Morrell PL, Buckler ES, Ross-Ibarra J (2012) Crop genomics: advances and applications. Nat Rev Genet 13:85–96CrossRefGoogle Scholar
  40. Mullins IM, Hilu KW (2002) Sequence variation in the gene encoding the 10-kDa prolamin in Oryza (Poaceae). 1. Phylogenetic implications. Theor Appl Genet 105:841–846CrossRefPubMedGoogle Scholar
  41. Nabholz B, Sarah G, Sabot F, Ruiz M, Adam H, Nidelet S, Ghesquière A, Santoni S, David J, Glémin S (2014) Transcriptome population genomics reveals severe bottleneck and domestication cost in the African rice (Oryza glaberrima). Mol Ecol 23:2210–2227CrossRefPubMedGoogle Scholar
  42. Nayar NM (1973) Origin and cytogenetics of rice. In: Caspari EW (ed) Advances in genetics. Academic, New York, pp 153–292Google Scholar
  43. Nayar NM (2010) The history and genetic transformation of the African rice, Oryza glaberrima Steud. (Gramineae). Curr Sci 99:1681–1689Google Scholar
  44. Nayar NM (2012) Evolution of the African Rice: a historical and biological perspective. Crop Sci 52:505–516CrossRefGoogle Scholar
  45. Nayar NM (2014) The origin of African Rice. In: Nayar NM (ed) Origin and phylogeny of rices. Academic, San Diego, pp 117–168Google Scholar
  46. Nock CJ, Waters DLE, Edwards MA, Bowen SG, Rice N, Cordeiro GM, Henry RJ (2011) Chloroplast genome sequences from total DNA for plant identification. Plant Biotechnol J 9:328–333CrossRefPubMedGoogle Scholar
  47. Oka H-I, Morishima H (1982) Phylogenetic differentiation of cultivated rice, XXIII. Potentiality of wild progenitors to evolve the Indica and Japonica types of rice cultivars. Euphytica 31:41–50CrossRefGoogle Scholar
  48. Orjuela J, Sabot F, Chéron S, Vigouroux Y, Adam H, Chrestin H, Sanni K, Lorieux M, Ghesquière A (2014) An extensive analysis of the African rice genetic diversity through a global genotyping. Theor Appl Genet 127:2211–2223CrossRefPubMedGoogle Scholar
  49. Porteres R (1962) Berceaux Agricoles Primaires Sur le Continent Africain. J Afr Hist 3:195–210CrossRefGoogle Scholar
  50. Purugganan MD (2014) An evolutionary genomic tale of two rice species. Nat Genet 46:931–932CrossRefPubMedGoogle Scholar
  51. Rakshit S, Rakshit A, Matsumura H, Takahashi Y, Hasegawa Y, Ito A, Ishii T, Miyashita NT, Terauchi R (2007) Large-scale DNA polymorphism study of Oryza sativa and O. rufipogon reveals the origin and divergence of Asian rice. Theor Appl Genet 114:731–743Google Scholar
  52. Robin GA, Dorian QF, Terence AB (2008) The genetic expectations of a protracted model for the origins of domesticated crops. Proc Natl Acad Sci USA 105:13982CrossRefGoogle Scholar
  53. Sang T, Ge S (2007a) Genetics and phylogenetics of rice domestication. Curr Opin Genet Dev 17:533–538CrossRefPubMedGoogle Scholar
  54. Sang T, Ge S (2007b) The puzzle of rice domestication. J Integ Plant Biol 49:760–768CrossRefGoogle Scholar
  55. Sanyal A, Ammiraju J, Lu F, Yu Y, Rambo T, Currie J, Kollura K, Kim H-R, Chen J, Ma J, San Miguel P, Mingsheng C, Wing R, Jackson S (2010) Orthologous comparisons of the Hd1 region across genera Reveal Hd1 gene lability within diploid Oryza species and disruptions to microsynteny in Sorghum. Mol Biol Evol 27:2487CrossRefPubMedGoogle Scholar
  56. Shahid Masood M, Nishikawa T, S-i Fukuoka, Njenga PK, Tsudzuki T, K-i Kadowaki (2004) The complete nucleotide sequence of wild rice (Oryza nivara) chloroplast genome: first genome wide comparative sequence analysis of wild and cultivated rice. Gene 340:133–139CrossRefPubMedGoogle Scholar
  57. Sotowa M, Sato YI, Sato T, Crayn D, Simon B, Waters DLE, Henry RJ, Ishikawa R, Ootsuka K, Kobayashi Y, Hao Y, Tanaka K, Ichitani K, Flowers JM, Purugganan MD, Nakamura I (2013) Molecular relationships between Australian annual wild rice, Oryza meridionalis, and two related perennial forms. Rice 6Google Scholar
  58. Tan L, Xie D, Sun C, Li X, Liu F, Sun X, Li C, Zhu Z, Fu Y, Cai H, Wang X (2008) Control of a key transition from prostrate to erect growth in rice domestication. Nat Genet 40:1360–1364CrossRefPubMedGoogle Scholar
  59. Tang J, Xia H, Cao M, Zhang X, Zeng W, Hu S, Tong W, Wang J, Wang J, Yu J, Yang H, Zhu L (2004) A comparison of rice chloroplast genomes. Plant Physiol 135:412–420CrossRefPubMedPubMedCentralGoogle Scholar
  60. Tang L, X-h Zou, Achoundong G, Potgieter C, Second G, D-y Zhang, Ge S (2010) Phylogeny and biogeography of the rice tribe (Oryzeae): evidence from combined analysis of 20 chloroplast fragments. Mol Phylogenet Evol 54:266–277CrossRefPubMedGoogle Scholar
  61. Thottappilly G, Rossel HW (1993) Evaluation of resistance to rice yellow mottle virus in Oryza species. Indian J Virol 9:65–73Google Scholar
  62. Tieyan L, Mingsheng C (2014) Genome evolution of Oryza. Biod Sci 22:51–65CrossRefGoogle Scholar
  63. Vaughan D (1989) The genus Oryza L. Current status of taxonomy. Rice research paper series. International Rice Research Institute (IRRI), Manilla, PhillipinesGoogle Scholar
  64. Vaughan DA, Morishima H, Kadowaki K (2003) Diversity in the Oryza genus. Curr Opin Plant Biol 6:139–146CrossRefPubMedGoogle Scholar
  65. Vaughan DA, Lu B-R, Tomooka N (2008) The evolving story of rice evolution. Plant Sci 174:394–408CrossRefGoogle Scholar
  66. Vitte C, Ishii T, Lamy F, Brar D, Panaud O (2004) Genomic paleontology provides evidence for two distinct origins of Asian rice (Oryza sativa L.). Mol Genet Genomics 272:504–511CrossRefPubMedGoogle Scholar
  67. Wambugu P, Furtado A, Waters D, Nyamongo D, Henry R (2013) Conservation and utilization of African Oryza genetic resources. Rice 6:29CrossRefPubMedPubMedCentralGoogle Scholar
  68. Wambugu PW, Brozynska M, Furtado A, Waters DL, Henry RJ (2015) Relationships of wild and domesticated rices (Oryza AA genome species) based upon whole chloroplast genome sequences. Sci Rep 5:13957CrossRefPubMedPubMedCentralGoogle Scholar
  69. Wang ZY, Second G, Tanksley SD (1992) Polymorphism and phylogenetic relationships among species in the genus Oryza as determined by analysis of nuclear RFLPS. Theor Appl Genet 83:565–581CrossRefPubMedGoogle Scholar
  70. Wang MH, Yu Y, Haberer G, Marri PR, Fan CZ, Goicoechea JL, Zuccolo A, Song X, Kudrna D, Ammiraju JSS, Cossu RM, Maldonado C, Chen J, Lee S, Sisneros N, de Baynast K, Golser W, Wissotski M, Kim W, Sanchez P, Ndjiondjop MN, Sanni K, Long MY, Carney J, Panaud O, Wicker T, Machado CA, Chen MS, Mayer KFX, Rounsley S, Wing RA (2014) The genome sequence of African rice (Oryza glaberrima) and evidence for independent domestication. Nat Genet 46:982–988CrossRefPubMedGoogle Scholar
  71. Wang K, Wambugu PW, Zhang B, Wu AC, Henry RJ, Gilbert RG (2015) The biosynthesis, structure and gelatinization properties of starches from wild and cultivated African rice species (Oryza barthii and Oryza glaberrima). Carbohydr Polym 129:92–100CrossRefPubMedGoogle Scholar
  72. Waters DLE, Nock CJ, Ishikawa R, Rice N, Henry RJ (2012) Chloroplast genome sequence confirms distinctness of Australian and Asian wild rice. Ecol Evol 2:211–217CrossRefPubMedPubMedCentralGoogle Scholar
  73. Wei X, Qiao W-H, Chen Y-T, Wang R-S, Cao L-R, Zhang W-X, Yuan N-N, Li Z-C, Zeng H-L, Yang Q-W (2012a) Domestication and geographic origin of Oryza sativa in China: insights from multilocus analysis of nucleotide variation of O. sativa and O. rufipogon. Mol Ecol 21:5073–5087CrossRefPubMedGoogle Scholar
  74. Wei X, Wang R, Cao L, Yuan N, Huang J, Qiao W, Zhang W, Zeng H, Yang Q (2012b) Origin of Oryza sativa in China inferred by nucleotide polymorphisms of organelle DNA. PLoS ONE 7:e49546CrossRefPubMedPubMedCentralGoogle Scholar
  75. Wu W, Liu X, Wang M, Meyer RS, Luo X, Ndjiondjop M-N, Tan L, Zhang J, Wu J, Cai H, Sun C, Wang X, Wing RA, Zhu Z (2017) A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication Nat. Plants 3:17064Google Scholar
  76. Xuehui H, Bin H (2015) Rice domestication occurred through single origin and multiple introgressions. Nat PlantsGoogle Scholar
  77. Zang LL, Zou XH, Zhang FM, Yang Z, Ge S (2011) Phylogeny and species delimitation of the C-genome diploid species in Oryza. J Syst Evol 49:386–395CrossRefGoogle Scholar
  78. Zhang L-B, Ge S (2007) Multilocus analysis of nucleotide variation and speciation in Oryza officinalis and its close relatives. Mol Biol Evol 24:769–783CrossRefPubMedGoogle Scholar
  79. Zhang L-B, Zhu Q, Wu Z-Q, Ross-Ibarra J, Gaut BS, Ge S, Sang T (2009) Selection on grain shattering genes and rates of rice domestication. New Phytol 184:708–720CrossRefPubMedGoogle Scholar
  80. Zhu Q, Ge S (2005) Phylogenetic relationships among A-genome species of the genus Oryza revealed by intron sequences of four nuclear genes. New Phytol 167:249–265CrossRefPubMedGoogle Scholar
  81. Zhu B-F, Lin H, Qian Q, Sang T, Zhou B, Minobe Y, Han B, Si L, Wang Z, Zhou Y, Zhu J, Shangguan Y, Lu D, Fan D, Li C (2011) Genetic control of a transition from black to straw-white seed hull in rice domestication. Plant Physiol 155:1301–1311CrossRefPubMedPubMedCentralGoogle Scholar
  82. Zhu T, Xu P-Z, Liu J-P, Peng S, Mo X-C, Gao L-Z (2014) Phylogenetic relationships and genome divergence among the AA—genome species of the genus Oryza as revealed by 53 nuclear genes and 16 intergenic regions. Mol Phylogenet Evol 70:348–361CrossRefPubMedGoogle Scholar
  83. Zou XH, Zhang FM, Zhang JG, Zang LL, Tang L, Wang J, Sang T, Ge S (2008) Analysis of 142 genes resolves the rapid diversification of the rice genus. Genome Biol 9:R49–R49CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Kenya Agricultural Livestock Research Organization (KALRO), Genetic Resources Research InstituteNairobiKenya
  2. 2.Africa Rice Centre (Africa Rice)CotonouBenin
  3. 3.Queensland Alliance for Agriculture and Food Innovation, University of QueenslandBrisbaneAustralia

Personalised recommendations