Embryonic Factors Associated with Recurrent Implantation Failure

Chapter

Abstract

Recurrent implantation failure (RIF) is a frustrating clinical scenario for the patient, physician, and embryology team alike. When seemingly “good-quality embryos” fail to implant in a normal uterus following multiple embryo transfers, there is often no immediate obvious reason. Despite considerable improvements in both clinical protocols and laboratory technologies over the last 30 years of assisted reproduction, the question remains as to how best to select the most developmentally competent embryo from a given cohort. The purpose of this chapter is not to provide a comprehensive review of the normal developmental kinetics or morphologic scoring systems of the human preimplantation embryo (reviewed by Matchinger and Racowsky (Reprod Biomed Online 26:210–21, 2013)). Rather, this chapter will (1) focus on embryonic factors associated with implantation in general and RIF specifically and (2) identify interventions in the IVF laboratory at the cleavage and blastocyst stages that may optimize pregnancy rates in this challenging patient population.

Keywords

Assisted hatching Blastocyst transfer Developmental kinetics Extended culture Freeze all IVF Preimplantation genetic testing Recurrent implantation failure Time-lapse imaging 

Abbreviations

AC

Abnormal cleavage

AH

Assisted hatching

CPR

Clinical pregnancy rate

FISH

Fluorescence in situ hybridization

HPI

Hours post-insemination

ICM

Inner cell mass

IR

Implantation rate

LBR

Live birth rate

NGS

Next-generation sequencing

PGT-A

Preimplantation genetic testing for aneuploidy

TE

Trophectoderm

TLI

Time-lapse imaging

RC

Reverse cleavage

RCT

Randomized controlled trial

RIF

Recurrent implantation failure

ZP

Zona pellucida

References

  1. 1.
    Edwards RG, Purdy JM, Steptoe PC, Walters DE. The growth of human preimplantation of embryos. Am J Obstet Gynecol. 1981;141:408–16.CrossRefPubMedGoogle Scholar
  2. 2.
    Racowsky C, Vernon M, Mayer J, Ball GD, Behr B, Pomeroy KO, et al. Standardization of grading embryo morphology. Fertil Steril. 2010;94:1152–3.CrossRefPubMedGoogle Scholar
  3. 3.
    Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Reprod. 2011;22:632–46.Google Scholar
  4. 4.
    Sakkas D, Shoukir Y, Chardonnens D, Bianchi PG, Campana A. Early cleavage of human embryos to the two-cell stage after intracytoplasmic sperm injection as an indicator of embryo viability. Hum Reprod. 1998;13:182–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Racowsky C, Combelles CMH, Nureddin A, Pan Y, Finna A, Miles L, et al. Day 3 and day 5 morphological predictors of embryo viability. Reprod Biomed Online. 2003;6:76–84.CrossRefGoogle Scholar
  6. 6.
    Sakkas D, Percival G, D’Arcy Y, Sharif K, Afnan M. Assessment of early cleaving in vitro fertilized human embyos at the 2-cell stage before transfer improves embryo selection. Fertil Steril. 2001;76:1150–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Lundin K, Bergh C, Hardarson T. Early embryo cleavage is a strong indicator of embryo quality in human IVF. Hum Reprod. 2001;16:2652–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Giorgetti C, Hans E, Terriou P, Salzmann J, Barry B, Chabert-Orsini V, et al. Early cleavage: an additional predictor of high implantation rate following elective single embryo transfer. Reprod Biomed Online. 2007;14:85–91.CrossRefPubMedGoogle Scholar
  9. 9.
    Puissant F, Van Rysselberge M, Barlow P, Deweze J, Leroy F. Embryo scoring as a prognostic tool in IVF treatment. Hum Reprod. 1987;2:705–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Steer C, Mills C, Tan S, Campbell S, Edwards RG. The cumulative embryo score: a predictive embryo scoring technique to select the optimal number of embryos to transfer in an in-vitro fertilization and embryo transfer program. Hum Reprod. 1992;7:117–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Carrillo AJ, Lane B, Pridman DD, Risch PP, Pool TB, Silverman IH, et al. Improved clinical outcomes for in vitro fertilization with delay of embryo transfer from 48 to 72 h after oocyte retrieval: use of glucose- and phosphate-free media. Fertil Steril. 1998;69:329–34.CrossRefPubMedGoogle Scholar
  12. 12.
    Kaser DJ, Racowsky C. Clinical outcomes following selection of human preimplantation embryos with time-lapse monitoring: a systematic review. Hum Reprod Update. 2014;20:617–31.CrossRefPubMedGoogle Scholar
  13. 13.
    Meseguer M, Herrero J, Tejera A, Hilligsoe KM, Ramsing NB, Remohi J. The use of morphokinetics as a predictor of embryo implantation. Hum Reprod. 2011;26:2658–71.CrossRefPubMedGoogle Scholar
  14. 14.
    Rubio I, Kuhlmann R, Agerholm I, Kirk J, Herrero J, Escriba MJ, et al. Limited implantation success of direct-cleaved human zygotes: a time-lapse study. Fertil Steril. 2012;98:1458–63.CrossRefPubMedGoogle Scholar
  15. 15.
    Kirkegaard K, Kesmodel US, Hindkjaer JJ, Ingerslev HJ. Time-lapse parameters as predictors of blastocyst development and pregnancy outcome in embryos from good prognosis patients: a prospective cohort study. Hum Reprod. 2013;28:2643–51.CrossRefPubMedGoogle Scholar
  16. 16.
    Chen AA, Tan L, Suraj V, Reijo Pera R, Shen S. Biomarkers identified with time-lapse imaging: discovery, validation, and practical application. Fertil Steril. 2013;99:1035–43.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Meseguer M, Rubio I, Cruz M, Basile N, Marcos J, Requena A. Embryo incubation and selection in a time-lapse monitoring system improves pregnancy outcome compared with a standard incubator: a retrospective cohort study. Fertil Steril. 2012;98:1481–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Kahraman S, Cetlinkaya M, Pirkevi C, Yelke H, Kumtepe Y. Comparison of blastocyst development and cycle outcome in patients with eSET using either conventional or time lapse incubators. A prospective study of good prognosis patients. J Reprod Stem Cell Biotechnol. 2013;3:55–61.CrossRefGoogle Scholar
  19. 19.
    Goodman LR, Goldberg J, Falcone T, Austin C, Desai N. Does the addition of time-lapse morphokinetics in the selection of embryos for transfer improve pregnancy rates? A randomized controlled trial. Fertil Steril. 2016;105:275–85.CrossRefPubMedGoogle Scholar
  20. 20.
    Kaser DJ, Bormann CL, Missmer SA, Farland LV, Ginsburg ES, Racowsky C. Eeva™ pregnancy pilot study: a randomized controlled trial of single embryo transfer on day 3 or day 5 with or without time-lapse imaging selection. Fertil Steril. 2016;106:e312.CrossRefGoogle Scholar
  21. 21.
    Rubio I, Galan A, Larreategui Z, Ayerdi F, Bellver J, Herrero J, et al. Clinical validation of embryo culture and selection by morphokinetic analysis: a randomized, controlled trial of the EmbryoScope. Fertil Steril. 2014;102:1287–94.CrossRefPubMedGoogle Scholar
  22. 22.
    Racowsky C, Kovacs P, Martins WP. A critical appraisal of time-lapse imaging for embryo selection: where are we and where do we need to go? J Assist Reprod Genet. 2015;32:1025–30.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ziebe S, Petersen K, Lindenberg S, Andersen AG, Gabrielsen A, Andersen AN. Embryo morphology or cleavage stage: how to select the best embryos for transfer after in-vitro fertilization. Hum Reprod. 1997;12:1545–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Alikani M, Calderon G, Tomkin G, Garrisi J, Kokot M, Cohen J. Cleavage anomalies in early human embryos and survival after prolonged culture in-vitro. Hum Reprod. 2000;15:2634–43.CrossRefPubMedGoogle Scholar
  25. 25.
    Hardarson T, Hanson C, Sjogren A, Lundin K. Human embryos with unevenly sized blastomeres have lower pregnancy and implantation rates: indications for aneuploidy and multinucleation. Hum Reprod. 2001;16:313–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Kligman I, Benadiva C, Alikani M, Munne S. The presence of multinucleated blastomeres in human embryos is correlated with chromosomal abnormalities. Hum Reprod. 1996;11:1492–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Jackson K, Ginsburg E, Hornstein M, Rein MS, Clarke RN. Multinucleation in normally fertilized embryos is associated with an accelerated ovulation induction response and lower implantation and pregnancy rates in in vitro fertilization-transfer cycles. Fertil Steril. 1998;70:60–6.CrossRefPubMedGoogle Scholar
  28. 28.
    Saldeen P, Sundstrom P. Nuclear status of four-cell preembryos predicts implantation potential in in vitro fertilization treatment cycles. Fertil Steril. 2005;84:584–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Tao J, Tamis R, Fink K, Williams B, Nelson-White T, Craig R. The neglected morula/compact stage embryo transfer. Hum Reprod. 2002;17:1513–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Skiadas C, Jackson K, Racowsky C. Early compaction on day 3 may be associated with increased implantation potential. Fertil Steril. 2006;86:1386–91.CrossRefPubMedGoogle Scholar
  31. 31.
    Schiewe MC, Araujo E Jr, Asch RH, Balmaceda JP. Enzymatic characterization of zona pellucida hardening in human eggs and embryos. J Assist Reprod Genet. 1995;12:2–7.CrossRefPubMedGoogle Scholar
  32. 32.
    Palmstierna M, Murkes D, Csemiczky G, Andersson O, Wramsby H. Zona pellucida thickness variation and occurrence of visible mononucleated blastomeres in pre-embryos are associated with a high pregnancy rate in IVF treatment. J Assist Reprod Genet. 1998;15:70–5.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Gabrielsen A, Bhatnager PR, Petersen K, Lindenberg S. Influence of zona thickness of human embryos on clinical pregnancy outcome following in vitro fertilization treatment. J Assist Reprod Genet. 2000;17:323–8.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Skiadas CC, Racowsky C. Developmental rate, cumulative scoring, and embryo viability. In: Elder K, Cohen J, editors. Human preimplantation embryo selection. London: Informa Healthcare; 2007. p. 101–21.Google Scholar
  35. 35.
    Athayde Wirka K, Chen AA, Conaghan J, Ivani K, Gvakharia M, Behr B, et al. Atypical embryo phenotypes identified by time-lapse microscopy: high prevalence and association with embryo development. Fertil Steril. 2014;101:1637–48.CrossRefPubMedGoogle Scholar
  36. 36.
    Liu Y, Chapple V, Roberts P, Matson P. Prevalence, consequence, and significance of reverse cleavage by human embryos viewed with the use of the Embryoscope time-lapse video system. Fertil Steril. 2014;102:1295–300.CrossRefPubMedGoogle Scholar
  37. 37.
    Gordon JW, Dapunt U. Restoration of normal implantation rates in mouse embryos with a hatching impairment by use of a new method of assisted hatching. Fertil Steril. 1993;59:1302–7.CrossRefPubMedGoogle Scholar
  38. 38.
    Cohen J, Wiemer KE, Wright G. Prognostic value of morphologic characteristics of cryopreserved embryos: a study using videocinematography. Fertil Steril. 1988;49:827–34.CrossRefPubMedGoogle Scholar
  39. 39.
    Malter HE, Cohen J. Partial zona dissection of the human oocyte: a nontraumatic method using micromanipulation to assist zona pellucida penetration. Fertil Steril. 1989;51:139–48.CrossRefPubMedGoogle Scholar
  40. 40.
    Obruca A, Strohmer H, Sakkas D, Menezo Y, Kogosowski A, Barak Y, et al. Use of lasers in assisted fertilization and hatching. Hum Reprod. 1994;9:1723–6.CrossRefPubMedGoogle Scholar
  41. 41.
    Nakayama T, Fujiwara H, Tastumi K, Fujita K, Higuchi T, Mori T. A new assisted hatching technique using a piezo-micromanipulator. Fertil Steril. 1998;69:784–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Carney SK, Das S, Blake D, Farquhar C, Seif MM, Nelson L. Assisted hatching on assisted conception in vitro fertilisation (IVF) and intracytoplasmic sperm injection (ICSI). Cochrane Database Syst Rev. 2012;12:CD001894.PubMedGoogle Scholar
  43. 43.
    Cohen J, Alikani M, Trowbridge J, Rosenwaks Z. Implantation enhancement by selective assisted hatching using zona drilling of human embryos with poor prognosis. Hum Reprod. 1992;7:685–91.CrossRefPubMedGoogle Scholar
  44. 44.
    Nagy ZP, Rienzi L, Iacobelli M, Morgia F, Ubaldi F, Schimberni M, et al. Laser-assisted hatching and removal of degenerated blastomere(s) of frozen-thawed embryo improves pregnancy rate. Fertil Steril. 1999;72:S4.Google Scholar
  45. 45.
    Balaban B, Urman B, Yakin K, Isiklar A. Laser assisted hatching increases pregnancy and implantation rates in cryopreserved embryos that were allowed to cleave in-vitro after thawing: a prospective randomised study. Hum Reprod. 2006;21:2136–40.CrossRefPubMedGoogle Scholar
  46. 46.
    Carter J, Graham J, Han T, Davis A, Richter K, Widra E. Preliminary results of a prospective randomized study to assess the value of laser assisted hatching before cleavage stage embryo transfer among good-prognosis in vitro fertilization (IVF) patients. Fertil Steril. 2003;80:S94.CrossRefGoogle Scholar
  47. 47.
    Sagoskin AW, Levy MJ, Tucker MJ, Richter KS, Widra EA. Laser assisted hatching in good prognosis patients undergoing in vitro fertilisation embryo transfer: a randomised control trial. Fertil Steril. 2007;87:283–7.CrossRefPubMedGoogle Scholar
  48. 48.
    Primi M-P, Senn A, Montag M, Van der Ven H, Mandelbaum J, Veiga A, et al. A European multicentre prospective randomized study to assess the use of assisted hatching with a diode laser and the benefit of immunosuppressive/antibiotic treatment in different patient populations. Hum Reprod. 2004;19:2325–33.CrossRefPubMedGoogle Scholar
  49. 49.
    Valojerdi MR, Eftekhari-Yazdi P, Karimian L, Hassani F, Movaghar B. Effect of laser zona thinning on vitrified-warmed embryo transfer at the cleavage stage: a prospective, randomized study. Reprod Biomed Online. 2010;20:234–42.CrossRefPubMedGoogle Scholar
  50. 50.
    Valojerdi MR, Eftekhari-Yazdi P, Karimian L, Ashtiani SK. Effect of laser zona pellucida opening on clinical outcome of assisted reproduction technology in patients with advanced female age, recurrent implantation failure, or frozen-thawed embryos. Fertil Steril. 2008;90:84–91.CrossRefPubMedGoogle Scholar
  51. 51.
    Stein A, Rufas O, Amit S, Avrech O, Pinkas H, Ovadia J, et al. Assisted hatching by partial zona dissection of human pre-embryos in patients with recurrent implantation failure after in vitro fertilization. Fertil Steril. 1995;63:838–41.CrossRefPubMedGoogle Scholar
  52. 52.
    Simon A, Laufer N. Assessment and treatment of repeated implantation failure. J Assist Reprod Genet. 2012;29:1227–39.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Jelinkova L, Pavelkova J, Strehler E, Paulus W, Zivny J, Sterzik K. Improved implantation rate after chemical removal of the zona pellucida. Fertil Steril. 2003;79:1299–303.CrossRefPubMedGoogle Scholar
  54. 54.
    Fang C, Li T, Miao BY, Zhuang GL, Zhou C. Mechanically expanding the zona pellucida of human frozen thawed embryos: a new method of assisted hatching. Fertil Steril. 2010;94:1302–7.CrossRefPubMedGoogle Scholar
  55. 55.
    Ménézo YJR, Servy E, Veiga A, Hazout A, Elder A. Culture systems: embryo co-culture. In: Smith G, Swain JE, Pool TB, editors. Embryo culture: methods and protocols. New York: Springer; 2012. p. 231–42.CrossRefGoogle Scholar
  56. 56.
    Kattal N, Cohen J, Barmat LI. Role of coculture in human in vitro fertilization: a meta-analysis. Fertil Steril. 2008;90:1069–76.CrossRefPubMedGoogle Scholar
  57. 57.
    Spandorfer SD, Pascal P, Parks J, Clark R, Veeck L, Davis OK, et al. Autologous endometrial coculture in patients with IVF failure: outcome of the first 1,030 cases. J Reprod Med. 2004;49:463–7.PubMedGoogle Scholar
  58. 58.
    Eyheremendy V, Raffo FG, Papayannis M, Barnes J, Granados C, Blaquier J. Beneficial effect of autologous endometrial cell co-culture in patients with repeated implantation failure. Fertil Steril. 2010;93:769–73.CrossRefPubMedGoogle Scholar
  59. 59.
    Benkhalifa M, Demirol A, Sari T, Balashova E, Tsouroupaki M, Giakoumakis Y, et al. Autologous embryo-cumulus cells co-culture and blastocyst transfer in repeated implantation failures: a collaborative prospective randomized study. Zygote. 2012;7:1–8.Google Scholar
  60. 60.
    Glujovsky D, Blake D, Farquhar C, Bardach A. Cleavage stage versus blastocyst stage embryo transfer in assisted reproductive technology. Cochrane Database Syst Rev. 2016;6:CD002118.Google Scholar
  61. 61.
    Guerif F, Bidault R, Gasnier O, Couet ML, Gervereau O, Lansac J, et al. Efficacy of blastocyst transfer after implantation failure. Reprod Biomed Online. 2004;9:630–6.CrossRefPubMedGoogle Scholar
  62. 62.
    Levitas E, Lunenfeld E, Har-Vardi I, Albotiano S, Sonin Y, Hackmon-Ram R, et al. Blastocyst-stage embryo transfer in patients who failed to conceive in three or more day 2-3 embryo transfer cycles: a prospective, randomized study. Fertil Steril. 2004;81:567–71.CrossRefPubMedGoogle Scholar
  63. 63.
    Gardner DK, Schoolcraft WB. In vitro culture of human blastocyst. In: Jansen R, Mortimer D, editors. Towards reproductive certainty: infertility and genetics beyond 1999. Carnforth: Parthenon; 1999. p. 378–88.Google Scholar
  64. 64.
    Gardner DK, Surrey E, Minjarez D, Leitz A, Stevens J, Schoolcraft WB. Single blastocyst transfer: a prospective randomized trial. Fertil Steril. 2004;8:551–5.CrossRefGoogle Scholar
  65. 65.
    Guerif F, Le Gouge A, Giraudeau B, Poindrom J, Bidault R, Gasnier O, et al. Limited value of morphological assessment at days 1 and 2 to predict blastocyst development: a prospective study based on 4,042 embryos. Hum Reprod. 2007;22:1973–81.CrossRefPubMedGoogle Scholar
  66. 66.
    Van den Abbeel E, Balaban B, Ziebe S, Lundin K, Cuesta MJ, Klein BM, et al. Association between blastocyst morphology and outcome of single-blastocyst transfer. Reprod Biomed Online. 2013;27:353–61.CrossRefPubMedGoogle Scholar
  67. 67.
    Hill MJ, Richter KS, Heitmann RJ, Grahm JR, Tucker MJ, DeCherney AH, et al. Trophectoderm grade predicts outcomes of single-blastocyst transfers. Fertil Steril. 2013;99:1283–9.CrossRefPubMedGoogle Scholar
  68. 68.
    Shapiro BS, Richter KS, Harris DC, Daneshmand ST. A comparison of day 5 and day 6 blastocyst transfers. Fertil Steril. 2001;75:1126–30.CrossRefPubMedGoogle Scholar
  69. 69.
    Barrenetxea G, López de Larruzea A, Ganzabal T, Jiménez R, Carbonero K, Mandiola M. Blastocyst culture after repeated failure of cleavage-stage embryo transfers: a comparison of day 5 and day 6 transfers. Fertil Steril. 2005;83:49–53.CrossRefPubMedGoogle Scholar
  70. 70.
    Campbell A, Fishel S, Bowman N, Duffy S, Sedler M, Thornton S. Retrospective analysis of outcomes after IVF using an aneuploidy risk model derived from time-lapse imaging without PGS. Reprod Biomed Online. 2013;27:140–6.CrossRefPubMedGoogle Scholar
  71. 71.
    Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Ross R. Contrasting patterns in in vitro fertilization pregnancy rates among fresh autologous, fresh oocyte donor, and cryopreserved cycles with the use of day 5 or day 6 blastocysts may reflect differences in embryo-endometrium synchrony. Fertil Steril. 2008;89:20–6.CrossRefPubMedGoogle Scholar
  72. 72.
    Richter KS, Shipley SK, McVearry I, Tucker MJ, Widra EA. Cryopreserved embryo transfers suggest that endometrial receptivity may contribute to reduced success rates of later developing embryos. Fertil Steril. 2006;86:862–6.CrossRefPubMedGoogle Scholar
  73. 73.
    Shapiro BS, Daneshmand ST, Restrepo H, Garner FC, Aguirre M, Hudson C. Matched-cohort comparison of single-embryo transfers in fresh and frozen-thawed embryo transfer cycles. Fertil Steril. 2013;99:389–92.CrossRefPubMedGoogle Scholar
  74. 74.
    Ahlstrom A, Westin C, Reismer E, Wikland M, Hardarson T. Trophectoderm morphology: an important parameter for predicting live birth after single blastocyst transfer. Hum Reprod. 2011;26:3289–96.CrossRefPubMedGoogle Scholar
  75. 75.
    Honnma H, Baba T, Sasaki M, Hashiba Y, Ohno H, Fukunaga T, et al. Trophectoderm morphology significantly affects the rates of ongoing pregnancy and miscarriage in frozen-thawed single-blastocyst transfer cycle in vitro fertilization. Fertil Steril. 2012;98:361–7.CrossRefPubMedGoogle Scholar
  76. 76.
    Devroey P, Polyzos NP, Blockeel C. An OHSS-free clinic by segmentation of IVF treatment. Hum Reprod. 2011;26:2593–7.CrossRefPubMedGoogle Scholar
  77. 77.
    Kaser DJ, Racowsky C. Should we eliminate fresh embryo transfer from ART. In: Schlegel PN, et al., editors. Biennial review of infertility, vol. 3. New York: Springer; 2013. p. 203–14.CrossRefGoogle Scholar
  78. 78.
    Aflatoonian A, Oskouian H, Ahmadi S, Oskouian L. Can fresh embryo transfers be replaced by cryopreserved-thawed embryo transfers in assisted reproductive cycles? A randomized controlled trial. J Assist Reprod Genet. 2010;27:357–63.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Shapiro BS, Daneshmand ST, Garner FC, et al. Evidence of impaired endometrial receptivity after ovarian stimulation for in vitro fertilization: a prospective randomized trial comparing fresh and frozen- thawed embryo transfer in normal responders. Fertil Steril. 2011a;96:344–8.CrossRefPubMedGoogle Scholar
  80. 80.
    Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C, Thomas S. Evidence of impaired endometrial receptivity after ovarian stimulation for in vitro fertilization: a prospective randomized trial comparing fresh and frozen-thawed embryo transfers in high responders. Fertil Steril. 2011b;96:516–8.CrossRefPubMedGoogle Scholar
  81. 81.
    Chen ZJ, Shi Y, Sun Y, Zhang B, Liang X, Cao Y, et al. Fresh versus frozen embryos for infertility in the polycystic ovary syndrome. N Engl J Med. 2016;375:523–33.CrossRefPubMedGoogle Scholar
  82. 82.
    Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C. Freeze-all at the blastocyst or bipronuclear stage: a randomized controlled trial. Fertil Steril. 2015;104:1138–44.CrossRefPubMedGoogle Scholar
  83. 83.
    Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C. Freeze-all can be a superior therapy to another fresh cycle in patients with prior fresh blastocyst implantation failure. Reprod Biomed Online. 2014;29:286–90.CrossRefPubMedGoogle Scholar
  84. 84.
    Wirleitner B, Schuff M, Stecher A, Murtinger M, Vanderzwalmen P. Pregnancy and birth outcomes following fresh or vitrified embryo transfer according to blastocyst morphology and expansion stage, and culturing strategy for delayed development. Hum Reprod. 2016;31:1685–95.CrossRefPubMedGoogle Scholar
  85. 85.
    Scott RT Jr, Uphapm KM, Forman EJ, Hong KH, Scott KL, Taylor D, et al. Blastocyst biopsy with comprehensive chromosomal screening and fresh embryo transfer significantly increases in vitro fertilization implantation and delivery rates: a randomized controlled trial. Fertil Steril. 2013a;100:697–703.CrossRefPubMedGoogle Scholar
  86. 86.
    Scott RT Jr, Upham KM, Forman EJ, Zhao T, Treff NR. Cleavage-stage biopsy significantly impairs human embryonic implantation potential while blastocyst biopsy does not: a randomized and paired clinical trial. Fertil Steril. 2013b;100:624–30.CrossRefPubMedGoogle Scholar
  87. 87.
    Platteau P, Staessen C, Michiels A, Van Steirteghem A, Liebaers I, Devroey P. Which patients with recurrent implantation failure after IVF benefit from PGD for aneuploidy screening? Reprod Biomed Online. 2006;12:334–9.CrossRefPubMedGoogle Scholar
  88. 88.
    Pagidas K, Ying Y, Keefe D. Predictive value of preimplantation genetic diagnosis for aneuploidy screening in repeated IVF-ET cycles among women with recurrent implantation failure. J Assist Reprod Genet. 2008;25:103–6.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Werner MD, Goodrich D, Tao X, Zhan Y, Franasiak JM, Juneau CR, et al. NGS provides accurate predictions of segmental aneuploidy and prognosticates reduced reproductive potential of the human blastocyst. Fertil Steril. 2016;106:e68.CrossRefGoogle Scholar
  90. 90.
    Gardner DK, Wale PL, Collins R, Lane M. Glucose consumption of single post-compaction human embryos is predictive of embryo sex and live birth outcome. Hum Reprod. 2011;26:1981–6.CrossRefPubMedGoogle Scholar
  91. 91.
    RoyChoudhury S, Singh A, Gupta NJ, Srivastava S, Joshi MV, Chakravarty B, et al. Repeated implantation failure versus repeated implantation success: discrimination at a metabolomic level. Hum Reprod. 2016;31:1265–74.CrossRefPubMedGoogle Scholar
  92. 92.
    Diez-Juan A, Rubio C, Marin C, Martinez S, Al-Asmar N, Riboldi M, et al. Mitochondrial DNA content as a viability score in human euploid embryos: less is better. Fertil Steril. 2015;104:534–41.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Sidney Kimmel Medical CollegeThomas Jefferson University PhiladelphiaPhiladelphiaUSA
  2. 2.IVI-RMA of New JerseyBasking RidgeUSA
  3. 3.Department of Obstetrics and GynecologyBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations