Advertisement

Oblique Lateral Lumbar Interbody Fusion: OLIF

  • Ronald MoskovichEmail author
  • Saqib Hasan
Chapter

Abstract

Advancements in surgical techniques and instrumentation have led to minimally invasive methods to achieve interbody fusion. The oblique lateral interbody fusion procedure represents a minimally invasive modification of the traditional anterolateral approach to the lumbar spine that allows quicker mobilization and less post-operative pain. The dissection plane is extraperitoneal and provides access to the discs anterior to the psoas muscle. This anterolateral corridor minimizes psoas-related injury, with early evidence of less post-operative lumbar plexus- and psoas-related morbidity, particularly at L4-5 which may be difficult to access via the direct lateral approach. This technique uniquely permits anterior access to L5-S1, which is not accessible using the lateral approach. Additional benefits of this technique include high fusion rates, indirect decompression, and deformity correction via a minimally invasive procedure. We review the history and evolution of this procedure and provide a detailed surgical technique to perform this minimally invasive psoas-sparing retroperitoneal approach to access the ventral lumbar spine.

References

  1. 1.
    Molloy S, Butler JS, Benton A, Malhotra K, Selvadurai S, Agu O. A new extensile anterolateral retroperitoneal approach for lumbar interbody fusion from L1 to S1: a prospective series with clinical outcomes. Spine J. 2016;16(6):786–91.CrossRefPubMedGoogle Scholar
  2. 2.
    Woods KR, Billys JB, Hynes RA. Technical description of oblique lateral interbody fusion at L1-L5 (OLIF25) and at L5-S1 (OLIF51) and evaluation of complication and fusion rates. Spine J. 2017;17(4):545–53.CrossRefPubMedGoogle Scholar
  3. 3.
    Hodgson AR, Stock FE. Anterior spinal fusion: A preliminary communication on the radical treatment of Pott’s disease and Pott’s paraplegia. Br. J. Surg. XLIV:266, 1956. Reprinted in Clin Orthop Relat Res. 1994 Mar;300:16-23 and 2006 Mar;444:10–5.Google Scholar
  4. 4.
    Mayer HM. A new microsurgical technique for minimally invasive anterior lumbar interbody fusion. Spine. 1997;22(6):691–9. discussion 700.CrossRefPubMedGoogle Scholar
  5. 5.
    Anand N, Baron EM, Khandehroo B, Kahwaty S. Long-term 2- to 5-year clinical and functional outcomes of minimally invasive surgery for adult scoliosis. Spine. 2013;38(18):1566–75.CrossRefPubMedGoogle Scholar
  6. 6.
    Phillips FM, Isaacs RE, Rodgers WB, Khajavi K, Tohmeh AG, Deviren V, et al. Adult degenerative scoliosis treated with XLIF: clinical and radiographical results of a prospective multicenter study with 24-month follow-up. Spine. 2013;38(21):1853–61.CrossRefPubMedGoogle Scholar
  7. 7.
    Khajavi K, Shen A, Hutchison A. Substantial clinical benefit of minimally invasive lateral interbody fusion for degenerative spondylolisthesis. Eur Spine J. 2015;24(Suppl 3):314–21.CrossRefPubMedGoogle Scholar
  8. 8.
    Castellvi AE, Nienke TW, Marulanda GA, Murtagh RD, Santoni BG. Indirect decompression of lumbar stenosis with transpsoas interbody cages and percutaneous posterior instrumentation. Clin Orthop Relat Res. 2014;472(6):1784–91.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wang MY, Vasudevan R, Mindea SA. Minimally invasive lateral interbody fusion for the treatment of rostral adjacent-segment lumbar degenerative stenosis without supplemental pedicle screw fixation. J Neurosurg Spine. 2014;21(6):861–6.CrossRefPubMedGoogle Scholar
  10. 10.
    Mroz TE, Lubelski D, Williams SK, O’Rourke C, Obuchowski NA, Wang JC, et al. Differences in the surgical treatment of recurrent lumbar disc herniation among spine surgeons in the United States. Spine J. 2014;14(10):2334–43.CrossRefPubMedGoogle Scholar
  11. 11.
    Mehren C, Korge A. Minimally invasive anterior oblique lumbar interbody fusion (OLIF). Eur Spine J. 2016;25(Suppl 4):471–2.CrossRefPubMedGoogle Scholar
  12. 12.
    Schroeder GD, Kepler CK, Kurd MF, Vaccaro AR, Hsu WK, Patel AA, et al. Rationale for the surgical treatment of lumbar degenerative spondylolisthesis. Spine. 2015;40(21):E1161–6.CrossRefPubMedGoogle Scholar
  13. 13.
    Baker JK, Reardon PR, Reardon MJ, Heggeness MH. Vascular injury in anterior lumbar surgery. Spine. 1993;18(15):2227–30.CrossRefPubMedGoogle Scholar
  14. 14.
    Unruh KP, Camp CL, Zietlow SP, Huddleston PM 3rd. Anatomical variations of the iliolumbar vein with application to the anterior retroperitoneal approach to the lumbar spine: a cadaver study. Clin Anat. 2008;21(7):666–73.CrossRefPubMedGoogle Scholar
  15. 15.
    Ozgur BM, Aryan HE, Pimenta L, Taylor WR. Extreme lateral interbody fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J. 2006;6(4):435–43.CrossRefPubMedGoogle Scholar
  16. 16.
    Sclafani JA, Kim CW. Complications associated with the initial learning curve of minimally invasive spine surgery: a systematic review. Clin Orthop Relat Res. 2014;472(6):1711–7.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Rodgers WB, Gerber EJ, Patterson J. Intraoperative and early postoperative complications in extreme lateral interbody fusion: an analysis of 600 cases. Spine. 2011;36(1):26–32.CrossRefPubMedGoogle Scholar
  18. 18.
    Yen CP, Uribe JS, et al. Spine (Phila Pa 1976). 2016;41(Suppl 8):S152–8.Google Scholar
  19. 19.
    Mogannam A, Bianchi C, Chiriano J, Patel S, Teruya TH, Lum SS, et al. Effects of prior abdominal surgery, obesity, and lumbar spine level on anterior retroperitoneal exposure of the lumbar spine. Arch Surg. 2012;147(12):1130–4.CrossRefPubMedGoogle Scholar
  20. 20.
    Molinares DM, Davis TT, Fung DA. Retroperitoneal oblique corridor to the L2-S1 intervertebral discs: an MRI study. J Neurosurg Spine. 2016;24(2):248–55.Google Scholar
  21. 21.
    Orita S, Inage K, Sainoh T, Fujimoto K, Sato J, Shiga Y, et al. Lower lumbar segmental arteries can intersect over the intervertebral disc in the oblique lateral interbody fusion approach with a risk for arterial injury: radiological analysis of lumbar segmental arteries by using magnetic resonance imaging. Spine. 2017;42(3):135–42.CrossRefPubMedGoogle Scholar
  22. 22.
    Davis TT, Hynes RA, Fung DA, Spann SW, MacMillan M, Kwon B, et al. Retroperitoneal oblique corridor to the L2-S1 intervertebral discs in the lateral position: an anatomic study. J Neurosurg Spine. 2014;21(5):785–93.CrossRefPubMedGoogle Scholar
  23. 23.
    Uribe JS, Arredondo N, Dakwar E, Vale FL. Defining the safe working zones using the minimally invasive lateral retroperitoneal transpsoas approach: an anatomical study. J Neurosurg Spine. 2010;13(2):260–6.CrossRefPubMedGoogle Scholar
  24. 24.
    Chung NS, Jeon CH, Lee HD, Kweon HJ. Preoperative evaluation of left common iliac vein in oblique lateral interbody fusion at L5-S1. Eur Spine J. 2017;26:2797.CrossRefPubMedGoogle Scholar
  25. 25.
    Beckman JM, Vincent B, Park MS, Billys JB, Isaacs RE, Pimenta L, et al. Contralateral psoas hematoma after minimally invasive, lateral retroperitoneal transpsoas lumbar interbody fusion: a multicenter review of 3950 lumbar levels. J Neurosurg Spine. 2017;26(1):50–4.CrossRefPubMedGoogle Scholar
  26. 26.
    Uribe JS, Harris JE, Beckman JM, Turner AW, Mundis GM, Akbarnia BA. Finite element analysis of lordosis restoration with anterior longitudinal ligament release and lateral hyperlordotic cage placement. Eur Spine J. 2015;24(Suppl 3):420–6.CrossRefPubMedGoogle Scholar
  27. 27.
    Chang J, Kim JS, Jo H. Ventral dural injury after oblique lumbar interbody fusion. World Neurosurg. 2017;98:881.e1–4.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Orthopedic SurgeryNYU Langone HealthNew YorkUSA

Personalised recommendations