Functional Link Artificial Neural Network for Multi-label Classification

  • Anwesha Law
  • Konika Chakraborty
  • Ashish Ghosh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10682)


In this article, a multi-label functional link artificial neural network (MLFLANN) has been developed to efficiently perform multi-label data classification. The input data is functionally expanded to a higher dimension, followed by iterative learning of the multi-label FLANN (MLFLANN) using the training set. The architecture of the network is less complex and the input space dimension is improved in an attempt to overcome the non-linear nature of the multi-label classification problem. The method has been validated on various multi-label datasets and the results are found to be encouraging.


Multi-label classification Neural networks Functional link artificial neural networks 


  1. 1.
    Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classification. Pattern Recogn. 37(9), 1757–1771 (2004)CrossRefGoogle Scholar
  2. 2.
    Cheng, W., Hüllermeier, E., Dembczynski, K.J.: Bayes optimal multilabel classification via probabilistic classifier chains. In: Proceedings of the 27th International Conference on Machine Learning, ICML 2010, pp. 279–286 (2010)Google Scholar
  3. 3.
    Cover, T.M.: Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Trans. Electron. Comput. 3, 326–334 (1965)CrossRefzbMATHGoogle Scholar
  4. 4.
    De Comité, F., Gilleron, R., Tommasi, M.: Learning multi-label alternating decision trees from texts and data. In: Perner, P., Rosenfeld, A. (eds.) MLDM 2003. LNCS, vol. 2734, pp. 35–49. Springer, Heidelberg (2003). CrossRefGoogle Scholar
  5. 5.
    Dehuri, S., Cho, S.B.: Evolutionarily optimized features in functional link neural network for classification. Expert Syst. Appl. 37(6), 4379–4391 (2010)CrossRefGoogle Scholar
  6. 6.
    Dehuri, S., Cho, S.B.: A hybrid genetic based functional link artificial neural network with a statistical comparison of classifiers over multiple datasets. Neural Comput. Appl. 19(2), 317–328 (2010)CrossRefGoogle Scholar
  7. 7.
    Dehuri, S., Roy, R., Cho, S.B., Ghosh, A.: An improved swarm optimized functional link artificial neural network (ISO-FLANN) for classification. J. Syst. Softw. 85(6), 1333–1345 (2012)CrossRefGoogle Scholar
  8. 8.
    Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: Advances in Neural Information Processing Systems, pp. 681–687 (2002)Google Scholar
  9. 9.
    Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice - Hall of India, New Delhi (2008)zbMATHGoogle Scholar
  10. 10.
    Herrera, F., Charte, F., Rivera, A.J., Del Jesus, M.J.: Multilabel Classification: Problem Analysis, Metrics and Techniques. Springer, Cham (2016). CrossRefGoogle Scholar
  11. 11.
    Kongsorot, Y., Horata, P.: Multi-label classification with extreme learning machine. In: 6th International Conference on Knowledge and Smart Technology (KST), pp. 81–86. IEEE (2014)Google Scholar
  12. 12.
    Misra, B.B., Dehuri, S.: Functional link artificial neural network for classification task in data mining. J. Comput. Sci. 3, 948–955 (2007)CrossRefGoogle Scholar
  13. 13.
    Pao, Y.-H.: Adaptive Pattern Recognition and Neural Networks. Addison-Wesley, Boston (1989)zbMATHGoogle Scholar
  14. 14.
    Pao, Y.-H., Phillips, S.M., Sobajic, D.J.: Neural-net computing and the intelligent control of systems. Int. J. Control 56(2), 263–289 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Trohidis, K., Tsoumakas, G., Kalliris, G., Vlahavas, I.P.: Multi-label classification of music into emotions. In: Ninth International Conference on Music Information Retrieval (ISMIR), vol. 8, pp. 325–330 (2008)Google Scholar
  16. 16.
    Turnbull, D., Barrington, L., Torres, D., Lanckriet, G.: Semantic annotation and retrieval of music and sound effects. IEEE Trans. Audio Speech Lang. Process. 16(2), 467–476 (2008)CrossRefGoogle Scholar
  17. 17.
    Zhang, M.L.: ML-RBF: RBF neural networks for multi-label learning. Neural Process. Lett. 29(2), 61–74 (2009)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Zhang, M.L., Zhou, Z.H.: Multilabel neural networks with applications to functional genomics and text categorization. IEEE Trans. Knowl. Data Eng. 18(10), 1338–1351 (2006)CrossRefGoogle Scholar
  19. 19.
    Zhang, M.L., Zhou, Z.H.: ML-KNN: a lazy learning approach to multi-label learning. Pattern Recogn. 40(7), 2038–2048 (2007)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Machine Intelligence UnitIndian Statistical InstituteKolkataIndia
  2. 2.Department of Computer ScienceVidyasagar UniversityMedinipurIndia

Personalised recommendations