Advertisement

The Asymptotic Behavior of the Price of Anarchy

  • Riccardo Colini-Baldeschi
  • Roberto Cominetti
  • Panayotis Mertikopoulos
  • Marco Scarsini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10660)

Abstract

This paper examines the behavior of the price of anarchy as a function of the traffic inflow in nonatomic congestion games with multiple origin-destination (O/D) pairs. Empirical studies in real-world networks show that the price of anarchy is close to 1 in both light and heavy traffic, thus raising the question: can these observations be justified theoretically? We first show that this is not always the case: the price of anarchy may remain bounded away from 1 for all values of the traffic inflow, even in simple three-link networks with a single O/D pair and smooth, convex costs. On the other hand, for a large class of cost functions (including all polynomials), the price of anarchy does converge to 1 in both heavy and light traffic conditions, and irrespective of the network topology and the number of O/D pairs in the network.

Notes

Acknowledgments

R. Colini-Baldeschi and M. Scarsini are members of GNAMPA-INdAM. R. Cominetti and P. Mertikopoulos gratefully acknowledge the support and hospitality of LUISS during a visit in which this research was initiated. R. Cominetti’s research is also supported by FONDECYT 1130564 and Núcleo Milenio ICM/FIC RC130003 “Información y Coordinación en Redes”. P. Mertikopoulos was partially supported by the French National Research Agency (ANR) project ORACLESS (ANR– 16– CE33–0004– 01) and the ECOS/CONICYT Grant C15E03. He gratefully acknowledges the support and hospitality of FONDECYT 1130564 and Núcleo Milenio “Información y Coordinación en Redes”. The authors also gratefully acknowledge financial support from the PGMO grant HEAVY.NET.

References

  1. Beckmann, M.J., McGuire, C., Winsten, C.B.: Studies in the Economics of Transportation. Yale University Press, New Haven, CT (1956)Google Scholar
  2. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Encyclopedia of Mathematics and its Applications, vol. 27. Cambridge University Press, Cambridge (1989)zbMATHGoogle Scholar
  3. Braess, D.: Über ein Paradoxon aus der Verkehrsplanung. Unternehmensforschung 12, 258–268 (1968)MathSciNetzbMATHGoogle Scholar
  4. Cole, R. and Tao, Y.: Large market games with near optimal efficiency. In: Proceedings of the 2016 ACM Conference on Economics and Computation, pp. 791–808. ACM (2016)Google Scholar
  5. Colini-Baldeschi, R., Cominetti, R., Scarsini, M.: On the price of anarchy of highly congested nonatomic network games. In: Gairing, M., Savani, R. (eds.) SAGT 2016. LNCS, vol. 9928, pp. 117–128. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53354-3_10 CrossRefGoogle Scholar
  6. Correa, J.R., Schulz, A.S., Stier-Moses, N.E.: Selfish routing in capacitated networks. Math. Oper. Res. 29(4), 961–976 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  7. Correa, J.R., Schulz, A.S., Stier-Moses, N.E.: A geometric approach to the price of anarchy in nonatomic congestion games. Games Econ. Behav. 64(2), 457–469 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. de Haan, L., Ferreira, A.: Extreme Value Theory: An Introduction. Operations Research and Financial Engineering. Springer, New York (2006).  https://doi.org/10.1007/0-387-34471-3 CrossRefzbMATHGoogle Scholar
  9. Dumrauf, D., Gairing, M.: Price of anarchy for polynomial wardrop games. In: Spirakis, P., Mavronicolas, M., Kontogiannis, S. (eds.) WINE 2006. LNCS, vol. 4286, pp. 319–330. Springer, Heidelberg (2006).  https://doi.org/10.1007/11944874_29 CrossRefGoogle Scholar
  10. Feldman, M., Immorlica, N., Lucier, B., Roughgarden, T., and Syrgkanis, V.: The price of anarchy in large games. In: Proceedings of the 48th Annual ACM Symposium on the Theory of Computing, STOC 2016 (2016)Google Scholar
  11. González Vayá, M., Grammatico, S., Andersson, G., and Lygeros, J.: On the price of being selfish in large populations of plug-in electric vehicles. In: Proceedings of the 53rd IEEE Annual Conference on Decision and Control, CDC 2015, pp. 6542–6547. IEEE (2015)Google Scholar
  12. Jessen, A.H., Mikosch, T.: Regularly varying functions. Publ. Inst. Math. (Beograd) (N.S.) 80(94), 171–192 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. Karamata, J.: Sur un mode de croissance régulière. Théorèmes fondamentaux. Bull. Soc. Math. France 61, 55–62 (1933)MathSciNetCrossRefzbMATHGoogle Scholar
  14. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-49116-3_38 CrossRefGoogle Scholar
  15. Law, L.M., Huang, J., Liu, M.: Price of anarchy for congestion games in cognitive radio networks. IEEE Trans. Wireless Commun. 11(10), 3778–3787 (2012)CrossRefGoogle Scholar
  16. Monnot, B., Benita, F., and Piliouras, G.: How bad is selfish routing in practice? Technical report (2017). arXiv:1703.01599v2
  17. O’Hare, S.J., Connors, R.D., Watling, D.P.: Mechanisms that govern how the price of anarchy varies with travel demand. Transp. Res. Part B. Methodol. 84, 55–80 (2016)CrossRefGoogle Scholar
  18. Papadimitriou, C.H.: Algorithms, games, and the internet. In: Proceedings of the 33rd Annual ACM Symposium on the Theory of Computing, STOC 2001 (2001)Google Scholar
  19. Pigou, A.C.: The Economics of Welfare, 1st edn. Macmillan and Co., London (1920)Google Scholar
  20. Resnick, S.I.: Heavy-Tail Phenomena. Operations Research and Financial Engineering. Springer, New York (2007).  https://doi.org/10.1007/978-0-387-45024-7. Probabilistic and statistical modelingzbMATHGoogle Scholar
  21. Roughgarden, T.: The price of anarchy is independent of the network topology. J. Comput. System Sci. 67(2), 341–364 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  22. Roughgarden, T.: Routing games. In: Algorithmic Game Theory, pp. 461–486. Cambridge Univ. Press, Cambridge (2007)Google Scholar
  23. Roughgarden, T., Tardos, É.: How bad is selfish routing? J. ACM 49(2), 236–259 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  24. Roughgarden, T., Tardos, É.: Bounding the inefficiency of equilibria in nonatomic congestion games. Games Econ Behav. 47(2), 389–403 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  25. Wardrop, J.G.: Some theoretical aspects of road traffic research. Proc. Inst. Civil Eng. Part II 1, 325–378 (1952)Google Scholar
  26. Youn, H., Gastner, M.T., Jeong, H.: Price of anarchy in transportation networks: efficiency and optimality control. Phys. Rev. Lett. 101(12), 128701 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Riccardo Colini-Baldeschi
    • 1
  • Roberto Cominetti
    • 2
  • Panayotis Mertikopoulos
    • 3
  • Marco Scarsini
    • 1
  1. 1.Dipartimento di Economia e Finanza, LUISSRomaItaly
  2. 2.Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiagoChile
  3. 3.Univ. Grenoble Alpes, CNRS, Inria, LIGGrenobleFrance

Personalised recommendations