Abstract
Respiratory sounds are composed by normal and adventitious respiratory sounds which comprise the sounds heard over the trachea/mouth and chest wall. All sounds can be described using frequency, intensity, and timbre. Frequency and intensity are perceived by human beings as pitch and loudness, respectively. Timbre allows the differentiation between two sounds with the same frequency and intensity. For respiratory sounds, some additional information is often informative, such as the timing within the respiratory cycle in which the sound occurs, the sound duration, and the influence of gravity/forced expiratory maneuvers on the sound. It is also important to know the origin and mechanisms of the respiratory sound. Normal and adventitious respiratory sounds can be highly informative about a person’s respiratory health as it is known that their characteristics change with gender, location where it is heard, body size, body position, and airflow, being particularly different between children and adults and in the presence of a respiratory condition. This chapter provides a comprehensive understanding of the use of normal and adventitious respiratory sounds for identifying respiratory conditions and their severity and monitoring respiratory interventions.
Keywords
Normal tracheal sound Normal lung sound Crackles WheezesReferences
- 1.Sovijärvi A, Dalmasso F, Vanderschoot J, Malmberg L, Righini G, Stoneman S (2000) Definition of terms for applications of respiratory sounds. Eur Respir Rev 10:597–610Google Scholar
- 2.Pasterkamp H, Kraman SS, Wodicka GR (1997) Respiratory sounds: advances beyond the stethoscope. Am J Resp Crit Care 156:974–987CrossRefGoogle Scholar
- 3.Gavriely N, Nissan M, Rubin A-H, Cugell DW (1995) Spectral characteristics of chest wall breath sounds in normal subjects. Thorax 50:1292–1300CrossRefGoogle Scholar
- 4.Lessard CS, Wong WC (1986) Correlation of constant flow rate with frequency spectrum of respiratory sounds when measured at the trachea. IEEE Trans Biomed Eng 33(4):461–463CrossRefGoogle Scholar
- 5.Krumpe PE, Cummiskey JM (1980) Use of laryngeal sound recordings to monitor apnea. Am Rev Respir Dis 122(5):797–801CrossRefGoogle Scholar
- 6.East KA, East TD (1985) Computerized acoustic detection of obstructive apnea. Comput Methods Prog Biomed 21(3):213–220CrossRefGoogle Scholar
- 7.Sanna A, Lorimier P, Dachy B, D’Hondt A, Sergysels R (1991) Value of monitoring of tracheal respiratory sounds in the diagnosis of nocturnal respiratory dysrhythmias. Acta Clin Belg 46(3):159–164Google Scholar
- 8.Pasterkamp H, Schafer J, Wodicka GR (1996) Posture-dependent change of tracheal sounds at standardized flows in patients with obstructive sleep apnea. Chest 110(6):1493–1498CrossRefGoogle Scholar
- 9.Beckerman RC, Wegmann MJ, Waring WW (1982) Tracheal breath sounds for detection of apnea in infants and children. Crit Care Med 10(6):363–366CrossRefGoogle Scholar
- 10.Beckerman RC, Wegmann MJ (1985) A comparison of tracheal breath sounds, airflow, and impedance pneumography in the detection of childhood apnea. Sleep 8(4):342–346CrossRefGoogle Scholar
- 11.Oliveira A, Marques A (2014) Respiratory sounds in healthy people: a systematic review. Respir Med 108(4):550–570CrossRefGoogle Scholar
- 12.Pasterkamp H, Sanchez I (1996) Effect of gas density on respiratory sounds. Am J Respir Crit Care Med 153(3):1087–1092CrossRefGoogle Scholar
- 13.Leblanc P, Macklem PT, Ross WR (1970) Breath sounds and distribution of pulmonary ventilation. Am Rev Respir Dis 102(1):10–16PubMedGoogle Scholar
- 14.Forgacs P (1978) The functional basis of pulmonary sounds. Chest 73(3):399–405CrossRefGoogle Scholar
- 15.Bohadana AB, Kanga JF, Kraman SS (1988) Does airway closure affect lung sound generation? Clin Physiol 8(4):341–349CrossRefGoogle Scholar
- 16.Bohadana A, Izbicki G, Kraman SS (2014) Fundamentals of lung auscultation. N Engl J Med 370(8):744–751. https://doi.org/10.1056/NEJMra1302901 CrossRefPubMedPubMedCentralGoogle Scholar
- 17.Pasterkamp H, Powell RE, Sanchez I (1996) Lung sound spectra at standardized air flow in normal infants, children, and adults. Am J Resp Crit Care 154(2):424–430. https://doi.org/10.1164/ajrccm.154.2.8756817 CrossRefGoogle Scholar
- 18.Dalmay F, Antonini MT, Marquet P, Menier R (1995) Acoustic properties of the normal chest. Eur Respir J 8:1761–1769CrossRefGoogle Scholar
- 19.Sovijärvi A, Malmberg L, Charbonneau G, Vanderschoot J, Dalmasso F, Sacco C, Rossi M, Earis J (2000) Characteristics of breath sounds and adventitious respiratory sounds. Eur Respir Rev 10(77):591–596Google Scholar
- 20.Malmberg LP, Pesu L, Sovijarvi ARA (1995) Significant differences in flow standardised breath sound spectra in patients with chronic obstructive pulmonary disease, stable asthma and health lungs. Thorax 50:1285–1291CrossRefGoogle Scholar
- 21.Malmberg LP, Sovijarvi ARA, Paajanen E, Piirila P, Haahtela T, Katila T (1994) Changes in frequency spectra of breath sounds during histaminic challenge test in adult asthmatics and healthy control subjects. Chest 105(1):122–132CrossRefGoogle Scholar
- 22.Gavriely N, Cugell DW (1996) Airflow effects on amplitude and spectral content of normal breath sounds. J Appl Physiol 80(1):5–13CrossRefGoogle Scholar
- 23.Hidalgo HA, Wegmann MJ, Waring WW (1991) Frequency spectra of normal breath sounds in childhood. Chest 100(4):999–1002CrossRefGoogle Scholar
- 24.Jones A, Jones RD, Kwong K, Burns Y (1999) Effect of positioning on recorded lung sound intensities in subjects without pulmonary dysfunction. Phys Ther 79(7):682–690CrossRefGoogle Scholar
- 25.Kraman SS (1984) The relationship between airflow and lung sound amplitude in normal subjects. Chest 86(2):225–229CrossRefGoogle Scholar
- 26.Kompis M, Pasterkamp H, Oh Y, Wodicka GR (1997) Distribution of inspiratory and expiratory respiratory sound intensity on the surface of the human thorax. Engineering in Medicine and Biology Society, 1997 Proceedings of the 19th Annual International Conference of the IEEE 5:2047-2050Google Scholar
- 27.Kiyokawa H, Pasterkamp H (2002) Volume-dependent variations of regional lung sound, amplitude and phase. J Appl Physiol 93:1030–1038CrossRefGoogle Scholar
- 28.Mineshita M, Kida H, Handa H, Nishine H, Furuya N, Nobuyama S, Inoue T, Matsuoka S, Miyazawa T (2014) The correlation between lung sound distribution and pulmonary function in COPD patients. PLoS One 9(9):e107506CrossRefGoogle Scholar
- 29.Oliveira A, Sen I, Kahya YP, Afreixo V, Marques A (2016) Computerised respiratory sounds can differentiate smokers and non-smokers. J Clin Monit Comput:1–10Google Scholar
- 30.Piirila P, Sovijarvi ARA, Kaisla T, Rajala H-M, Katila T (1991) Crackles in patients with fibrosing alveolitis, bronchiectasis, COPD, and heart failure. Chest 99(5):1076–1083CrossRefGoogle Scholar
- 31.Schreur HJ, Diamant Z, Vanderschoot J, Zwinderman AH, Dijkman JH, Sterk PJ (1996) Lung sounds during allergen-induced asthmatic responses in patients with asthma. Am J Respir Crit Care Med 153(5):1474–1480CrossRefGoogle Scholar
- 32.Ono H, Taniguchi Y, Shinoda K, Sakamoto T, Kudoh S, Gemma A (2009) Evaluation of the usefulness of spectral analysis of inspiratory lung sounds recorded with phonopneumography in patients with interstitial pneumonia. J Nippon Med Sch 76(2):67–75CrossRefGoogle Scholar
- 33.Piirila P, Lehtola H, Zitting A, Kivisaari L, Koskinen H, Luukkonen R, Salo SP, Vehmas T, Nordman H, Sovijarvi ARA (2000) Lung sounds in asbestos induced pulmonary disorders. Eur Respir J 16(5):901–908CrossRefGoogle Scholar
- 34.Fiz JA, Jane R, Salvatella D, Izquierdo J, Lores L, Caminal P, Morera J (1999) Analysis of tracheal sounds during forced exhalation in asthma patients and normal subjects: bronchodilator response effect. Chest 116(3):633–638CrossRefGoogle Scholar
- 35.Dosani R, Kraman SS (1983) Lung sound intensity variability in normal men. A contour phonopneumographic study. Chest 83(4):628–631CrossRefGoogle Scholar
- 36.O’Donnell DM, Kraman SS (1982) Vesicular lung sound amplitude mapping by automated flow-gated phonopneumography. J Appl Physiol Respir Environ Exerc Physiol 53(3):603–609Google Scholar
- 37.Ploysongsang Y, Martin RR, Ross WRD, Loudon RG, Macklem PT (1977) Breath sounds and regional ventilation. Am Rev Respir Dis 116:187–199Google Scholar
- 38.Kraman SS (1983) Lung sounds - relative sites of origin and comparative amplitudes in normal subjects. Lung 161(1):57–64CrossRefGoogle Scholar
- 39.Schreur HJ, Vanderschoot J, Zwinderman AH, Dijkman JH, Sterk PJ (1995) The effect of methacholine-induced acute airway narrowing on lung sounds in normal and asthmatic subjects. Eur Respir J 8(2):257–265CrossRefGoogle Scholar
- 40.Schreur HJW, Vanderschoot J, Zwinderman AH, Dijkman JH, Sterk PJ (1994) Abnormal lung sounds in patients with asthma during episodes with normal lung function. Chest 106(1):91–99CrossRefGoogle Scholar
- 41.Ishimatsu A, Nakano H, Nogami H, Yoshida M, Iwanaga T, Hoshino T (2015) Breath sound intensity during tidal breathing in COPD patients. Internal medicine (Tokyo, Japan) 54(10):1183–1191CrossRefGoogle Scholar
- 42.Schreur H, Sterk P, Vanderschoot J, Klink H, Vollenhoven E, Dijkman J (1992) Lung sound intensity in patients with emphysema and in normal subjects at standardised airflows. Thorax 47(9):674–679CrossRefGoogle Scholar
- 43.Nath AR, Capel LH (1974) Inspiratory crackles and mechanical events of breathing. Thorax 29(6):695–698CrossRefGoogle Scholar
- 44.Forgacs P (1967) Crackles and wheezes. Lancet 2(7508):203–205CrossRefGoogle Scholar
- 45.Forgacs P (1978) Lung Sounds. Bailliere Tindall, LondonGoogle Scholar
- 46.Fredberg JJ, Holford SK (1983) Discrete lung sounds: crackles (rales) as stress-relaxation quadrupoles. J Acoust Soc Am 73(3):1036–1046CrossRefGoogle Scholar
- 47.Piirila P, Sovijarvi ARA (1995) Crackles: recording, analysis and clinical significance. Eur Respir J 8(12):2139–2148CrossRefGoogle Scholar
- 48.Kiyokawa H, Geenberg M, Shirota K, Pasterkamp H (2001) Auditory detection of simulated crackles in breath sounds. Chest 119:1886–1892CrossRefGoogle Scholar
- 49.Vyshedskiy A, Alhashem RM, Paciej R, Ebril M, Rudman I, Fredberg JJ, Murphy R (2009) Mechanism of inspiratory and expiratory crackles. Chest 135(1):156–164CrossRefGoogle Scholar
- 50.Baughman RP, Shipley RT, Loudon RG, Lower EE (1991) Crackles in interstitial lung disease. Comparison of sarcoidosis and fibrosing alveolitis. Chest 100(1):96–101CrossRefGoogle Scholar
- 51.Nath AR, Capel LH (1974) Inspiratory crackles - early and late. Thorax 29(2):223–227CrossRefGoogle Scholar
- 52.Kompis M, Pasterkamp H, Wodicka GR (2001) Acoustic imaging of the human chest. Chest 120(4):1309–1321CrossRefGoogle Scholar
- 53.Workum P, Holford SK, Delbono EA, Murphy RL (1982) The prevalence and character of crackles (rales) in young women without significant lung disease. Am Rev Respir Dis 126(5):921–923PubMedGoogle Scholar
- 54.Thacker RE, Kraman SS (1982) The prevalence of auscultatory crackles in subjects without lung disease. Chest 81(6):672–674CrossRefGoogle Scholar
- 55.Bettencourt PE, Del Bono EA, Spiegelman D, Hertzmark E, Murphy RL Jr (1994) Clinical utility of chest auscultation in common pulmonary diseases. Am J Respir Crit Care Med 150(5 Pt 1):1291–1297CrossRefGoogle Scholar
- 56.Murphy RLH, Vyshedskiy A, Power-Charnitsky V-A, Bana DS, Marinelli PM, Wong-Tse A, Paciej R (2004) Automated lung sound analysis in patients with pneumonia. Respir Care 49(12):1490–1497PubMedGoogle Scholar
- 57.Murphy RLH (2008) In defense of the stethoscope. Respir Care 53(3):355–369PubMedPubMedCentralGoogle Scholar
- 58.Jacome C, Oliveira A, Marques A (2015) Computerized respiratory sounds: a comparison between patients with stable and exacerbated COPD. Clin Respir J. https://doi.org/10.1111/crj.12392
- 59.Munakata M, Ukita H, Doi I, Ohtsuka Y, Masaki Y, Homma Y, Kawakami Y (1991) Spectral and waveform characteristics of fine and coarse crackles. Thorax 46(9):651–657CrossRefGoogle Scholar
- 60.Marques A, Bruton A, Barney A, Hall A (2012) Are crackles an appropriate outcome measure for airway clearance therapy? Respir Care 57(9):1468–1475CrossRefGoogle Scholar
- 61.Ponte DF, Moraes R, Hizume DC, Alencar AM (2013) Characterization of crackles from patients with fibrosis, heart failure and pneumonia. Med Eng Phys 35(4):448–456CrossRefGoogle Scholar
- 62.Gurung A, Scrafford CG, Tielsch JM, Levine OS, Check W (2011) Computerized lung sound analysis as diagnostic aid for the detection of abnormal lung sounds: a systematic review and meta-analysis. Respir Med 105(9):1396–1403CrossRefGoogle Scholar
- 63.Morillo DS, Leon Jimenez A, Moreno SA (2013) Computer-aided diagnosis of pneumonia in patients with chronic obstructive pulmonary disease. J Am Med Inform Assoc 20(e1):2012–001171Google Scholar
- 64.Piirila P (1992) Changes in crackle characteristics during the clinical course of pneumonia. Chest 102(1):176–183CrossRefGoogle Scholar
- 65.Sánchez Morillo D, Astorga Moreno S, Fernández Granero MÁ, León Jiménez A (2013) Computerized analysis of respiratory sounds during COPD exacerbations. Comput Biol Med 43(7):914–921CrossRefGoogle Scholar
- 66.Wang Z, Xiong YX (2012) Lung sound patterns help to distinguish congestive heart failure, chronic obstructive pulmonary disease, and asthma exacerbations. Acad Emerg Med 19(1):79–84CrossRefGoogle Scholar
- 67.Shirai F, Kudoh S, Shibuya A, Sada K, Mikami R (1981) Crackles in asbestos workers: auscultation and lung sound analysis. Br J Dis Chest 75(4):386–396CrossRefGoogle Scholar
- 68.Urquhart RB, McGhee J, Macleod JES, Banham SW, Moran F (1981) The diagnostic value of pulmonary sounds: a preliminary study by computer-aided analysis. Comput Biol Med 11(3):129–139CrossRefGoogle Scholar
- 69.Beck R, Elias N, Shoval S, Tov N, Talmon G, Godfrey S, Bentur L (2007) Computerized acoustic assessment of treatment efficacy of nebulized epinephrine and albuterol in RSV bronchiolitis. BMC Pediatr 7(22):1–6Google Scholar
- 70.Marques A, Oliveira A, Jacome C (2014) Computerized adventitious respiratory sounds as outcome measures for respiratory therapy: a systematic review. Respir Care 59(5):765–776. https://doi.org/10.4187/respcare.02765 CrossRefPubMedPubMedCentralGoogle Scholar
- 71.Hoevers J, Loudon RG (1990) Measuring crackles. Chest 98(5):1240–1243CrossRefGoogle Scholar
- 72.Epler GR, Carrington CB, Gaensler EA (1978) Crackles (rales) in the interstitial pulmonary diseases. Chest 73(3):333–339CrossRefGoogle Scholar
- 73.Sovijarvi AR, Piirila P, Luukkonen R (1996) Separation of pulmonary disorders with two-dimensional discriminant analysis of crackles. Clin Physiol 16(2):171–181CrossRefGoogle Scholar
- 74.Workum P, DelBono EA, Holford SK, Murphy RLH Jr (1986) Observer agreement, chest auscultation, and crackles in asbestos-exposed workers. Chest 89(1):27–29CrossRefGoogle Scholar
- 75.Murphy RL Jr, Gaensler EA, Holford SK, Del Bono EA, Epler G (1984) Crackles in the early detection of asbestosis. Am Rev Respir Dis 129(3):375–379PubMedGoogle Scholar
- 76.Al Jarad N, Davies SW, Logan-Sinclair R, Rudd RM (1994) Lung crackle characteristics in patients with asbestosis, asbestos-related pleural disease and left ventricular failure using a time-expanded waveform analysis--a comparative study. Respir Med 88(1):37–46CrossRefGoogle Scholar
- 77.Deguchi F, Hirakawa S, Gotoh K, Yagi Y, Ohshima S (1993) Prognostic significance of posturally induced crackles. Long-term follow-up of patients after recovery from acute myocardial infarction. Chest 103(5):1457–1462CrossRefGoogle Scholar
- 78.Akasaka K, Konno K, Ono Y, Mue S, Abe C (1975) Acoustical studies on respiratory sounds in asthmatic patients. Tohoku J Exp Med 117(4):323–333CrossRefGoogle Scholar
- 79.Meslier N, Charbonneau G, Racineux JL (1995) Wheezes. Eur Respir J 8(11):1942–1948CrossRefGoogle Scholar
- 80.Beck R, Gavriely N (1990) The reproducibility of forced expiratory wheezes. Am Rev Respir Dis 141(6):1418–1422CrossRefGoogle Scholar
- 81.Grotberg JB, Gavriely N (1989) Flutter in collapsible tubes: a theoretical model of wheezes. J Appl Physiol 66(5):2262–2273CrossRefGoogle Scholar
- 82.Gavriely N, Kelly KB, Grotberg JB, Loring SH (1985) Forced expiratory wheezes are a manifestation of airway flow limitation. J Appl Physiol 62(6):2398–2403CrossRefGoogle Scholar
- 83.Gavriely N, Shee TR, Cugell DW, Grotberg JB (1985) Flutter in flow-limited collapsible tubes: a mechanism for generation of wheezes. J Appl Physiol 66(5):2251–2261CrossRefGoogle Scholar
- 84.Baughman RP, Loudon RG (1985) Lung sound analysis for continuous evaluation of airflow obstruction in asthma. Chest 88(3):364–368CrossRefGoogle Scholar
- 85.Oud M, Dooijes EH, van der Zee JS (2000) Asthmatic airways obstruction assessment based on detailed analysis of respiratory sound spectra. IEEE 47(11):1450–1455Google Scholar
- 86.Yi GA (2004) A software toolkit for acoustic respiratory analysis. Massachusetts Institute of Technology, MassachusettsGoogle Scholar
- 87.Fiz J, Jané R, Homs A, Izquierdo J, García M, Morera J (2002) Detection of wheezing during maximal forced exhalation in patients with obstructed airways. Chest 122(1):186–191CrossRefGoogle Scholar
- 88.Baughman RP, Loudon RG (1984) Quantitation of wheezing in acute asthma. Chest 86(5):718–722CrossRefGoogle Scholar
- 89.Sanchez I, Powell RE, Pasterkamp H (1993) Wheezing and airflow obstruction during methacholine challenge in children with cystic fibrosis and in normal children. Am Rev Respir Dis 147(3):705–709CrossRefGoogle Scholar
- 90.Bentur L, Beck R, Shinawi M, Naveh T, Gavriely N (2003) Wheeze monitoring in children for assessment of nocturnal asthma and response to therapy. Eur Respir J 21(4):621–626CrossRefGoogle Scholar
- 91.Bentur L, Beck R, Berkowitz D, Hasanin J, Berger I, Elias N, Gavriely N (2004) Adenosine bronchial provocation with computerized wheeze detection in young infants with prolonged cough: correlation with long-term follow-up. Chest 126(4):1060–1065CrossRefGoogle Scholar
- 92.Baughman RP, Loudon RG (1988) The utility of the estimated Tw/Ttot in evaluating a long acting sympathomimetic agent used for nocturnal asthma. Ann R Chron 5:157–160Google Scholar
- 93.Cortes S, Jane R, Fiz JA, Morera J (2005) Monitoring of wheeze duration during spontaneous respiration in asthmatic patients. Conf Proc IEEE Eng Med Biol Soc 6:6141–6144PubMedGoogle Scholar
- 94.Fiz JA, Jane R, Izquierdo J, Homs A, Garcia MA, Gomez R, Monso E, Morera J (2006) Analysis of forced wheezes in asthma patients. Respiration 73(1):55–60CrossRefGoogle Scholar
- 95.Jacome C, Marques A (2015) Computerized respiratory sounds in patients with COPD: a systematic review. COPD 12(1):104–112. https://doi.org/10.3109/15412555.2014.908832 CrossRefPubMedGoogle Scholar
- 96.Seemungal TA, Donaldson GC, Bhowmik A, Jeffries DJ, Wedzicha JA (2000) Time course and recovery of exacerbations in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 161(5):1608–1613CrossRefGoogle Scholar
- 97.Oliveira A, Pinho C, Dinis J, Oliveira D, Marques A (2013) Automatic wheeze detection and lung function evaluation: a preliminary study. In: Stacey D, Solé-Casals J, Fred A, Gamboa H (eds) Healthinf - 6th International Conference on Health Informatics, Barcelona, pp 323–326Google Scholar
- 98.Dinis J, Oliveira A, Pinho C, Campos G, Rodrigues J, Marques A (2013) Automatic wheeze and respiratory phase detectors to evaluate respiratory physiotherapy in LRTI: a preliminary study. In: Stacey D, Solé-Casals J, Fred A, Gamboa H (eds) Healthinf - 6th International Conference on Health Informatics, Barcelona, pp 233–238Google Scholar
- 99.Postiaux G, Louis J, Labasse HC, Gerroldt J, Kotik AC, Lemuhot A, Patte C (2011) Evaluation of an alternative chest physiotherapy method in infants with respiratory syncytial virus bronchiolitis. Respir Care 56(7):989–994CrossRefGoogle Scholar
- 100.Gomes EL, Postiaux G, Medeiros DR, Monteiro KK, Sampaio LM, Costa D (2012) Chest physical therapy is effective in reducing the clinical score in bronchiolitis: randomized controlled trial. Rev Bras Fisioter 16(3):241–247CrossRefGoogle Scholar
- 101.Paciej R, Vyshedskiy A, Bana D, Murphy R (2004) Squawks in pneumonia. Thorax 59(2):177–178CrossRefGoogle Scholar
- 102.Pasterkamp H, Brand PL, Everard M, Garcia-Marcos L, Melbye H, Priftis KN (2016) Towards the standardisation of lung sound nomenclature. Eur Respir J 47(3):724–732CrossRefGoogle Scholar
- 103.Charbonneau G, Ademovic E, Cheetham B, Malmberg L, Vanderschoot J, Sovijärvi A (2000) Basic techniques for respiratory sound analysis. Eur Respir Rev 10(77):625–635Google Scholar