Breath Sounds pp 181-206 | Cite as

Normal Versus Adventitious Respiratory Sounds

Chapter

Abstract

Respiratory sounds are composed by normal and adventitious respiratory sounds which comprise the sounds heard over the trachea/mouth and chest wall. All sounds can be described using frequency, intensity, and timbre. Frequency and intensity are perceived by human beings as pitch and loudness, respectively. Timbre allows the differentiation between two sounds with the same frequency and intensity. For respiratory sounds, some additional information is often informative, such as the timing within the respiratory cycle in which the sound occurs, the sound duration, and the influence of gravity/forced expiratory maneuvers on the sound. It is also important to know the origin and mechanisms of the respiratory sound. Normal and adventitious respiratory sounds can be highly informative about a person’s respiratory health as it is known that their characteristics change with gender, location where it is heard, body size, body position, and airflow, being particularly different between children and adults and in the presence of a respiratory condition. This chapter provides a comprehensive understanding of the use of normal and adventitious respiratory sounds for identifying respiratory conditions and their severity and monitoring respiratory interventions.

Keywords

Normal tracheal sound Normal lung sound Crackles Wheezes 

References

  1. 1.
    Sovijärvi A, Dalmasso F, Vanderschoot J, Malmberg L, Righini G, Stoneman S (2000) Definition of terms for applications of respiratory sounds. Eur Respir Rev 10:597–610Google Scholar
  2. 2.
    Pasterkamp H, Kraman SS, Wodicka GR (1997) Respiratory sounds: advances beyond the stethoscope. Am J Resp Crit Care 156:974–987CrossRefGoogle Scholar
  3. 3.
    Gavriely N, Nissan M, Rubin A-H, Cugell DW (1995) Spectral characteristics of chest wall breath sounds in normal subjects. Thorax 50:1292–1300CrossRefGoogle Scholar
  4. 4.
    Lessard CS, Wong WC (1986) Correlation of constant flow rate with frequency spectrum of respiratory sounds when measured at the trachea. IEEE Trans Biomed Eng 33(4):461–463CrossRefGoogle Scholar
  5. 5.
    Krumpe PE, Cummiskey JM (1980) Use of laryngeal sound recordings to monitor apnea. Am Rev Respir Dis 122(5):797–801CrossRefGoogle Scholar
  6. 6.
    East KA, East TD (1985) Computerized acoustic detection of obstructive apnea. Comput Methods Prog Biomed 21(3):213–220CrossRefGoogle Scholar
  7. 7.
    Sanna A, Lorimier P, Dachy B, D’Hondt A, Sergysels R (1991) Value of monitoring of tracheal respiratory sounds in the diagnosis of nocturnal respiratory dysrhythmias. Acta Clin Belg 46(3):159–164Google Scholar
  8. 8.
    Pasterkamp H, Schafer J, Wodicka GR (1996) Posture-dependent change of tracheal sounds at standardized flows in patients with obstructive sleep apnea. Chest 110(6):1493–1498CrossRefGoogle Scholar
  9. 9.
    Beckerman RC, Wegmann MJ, Waring WW (1982) Tracheal breath sounds for detection of apnea in infants and children. Crit Care Med 10(6):363–366CrossRefGoogle Scholar
  10. 10.
    Beckerman RC, Wegmann MJ (1985) A comparison of tracheal breath sounds, airflow, and impedance pneumography in the detection of childhood apnea. Sleep 8(4):342–346CrossRefGoogle Scholar
  11. 11.
    Oliveira A, Marques A (2014) Respiratory sounds in healthy people: a systematic review. Respir Med 108(4):550–570CrossRefGoogle Scholar
  12. 12.
    Pasterkamp H, Sanchez I (1996) Effect of gas density on respiratory sounds. Am J Respir Crit Care Med 153(3):1087–1092CrossRefGoogle Scholar
  13. 13.
    Leblanc P, Macklem PT, Ross WR (1970) Breath sounds and distribution of pulmonary ventilation. Am Rev Respir Dis 102(1):10–16PubMedGoogle Scholar
  14. 14.
    Forgacs P (1978) The functional basis of pulmonary sounds. Chest 73(3):399–405CrossRefGoogle Scholar
  15. 15.
    Bohadana AB, Kanga JF, Kraman SS (1988) Does airway closure affect lung sound generation? Clin Physiol 8(4):341–349CrossRefGoogle Scholar
  16. 16.
    Bohadana A, Izbicki G, Kraman SS (2014) Fundamentals of lung auscultation. N Engl J Med 370(8):744–751.  https://doi.org/10.1056/NEJMra1302901 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Pasterkamp H, Powell RE, Sanchez I (1996) Lung sound spectra at standardized air flow in normal infants, children, and adults. Am J Resp Crit Care 154(2):424–430.  https://doi.org/10.1164/ajrccm.154.2.8756817 CrossRefGoogle Scholar
  18. 18.
    Dalmay F, Antonini MT, Marquet P, Menier R (1995) Acoustic properties of the normal chest. Eur Respir J 8:1761–1769CrossRefGoogle Scholar
  19. 19.
    Sovijärvi A, Malmberg L, Charbonneau G, Vanderschoot J, Dalmasso F, Sacco C, Rossi M, Earis J (2000) Characteristics of breath sounds and adventitious respiratory sounds. Eur Respir Rev 10(77):591–596Google Scholar
  20. 20.
    Malmberg LP, Pesu L, Sovijarvi ARA (1995) Significant differences in flow standardised breath sound spectra in patients with chronic obstructive pulmonary disease, stable asthma and health lungs. Thorax 50:1285–1291CrossRefGoogle Scholar
  21. 21.
    Malmberg LP, Sovijarvi ARA, Paajanen E, Piirila P, Haahtela T, Katila T (1994) Changes in frequency spectra of breath sounds during histaminic challenge test in adult asthmatics and healthy control subjects. Chest 105(1):122–132CrossRefGoogle Scholar
  22. 22.
    Gavriely N, Cugell DW (1996) Airflow effects on amplitude and spectral content of normal breath sounds. J Appl Physiol 80(1):5–13CrossRefGoogle Scholar
  23. 23.
    Hidalgo HA, Wegmann MJ, Waring WW (1991) Frequency spectra of normal breath sounds in childhood. Chest 100(4):999–1002CrossRefGoogle Scholar
  24. 24.
    Jones A, Jones RD, Kwong K, Burns Y (1999) Effect of positioning on recorded lung sound intensities in subjects without pulmonary dysfunction. Phys Ther 79(7):682–690CrossRefGoogle Scholar
  25. 25.
    Kraman SS (1984) The relationship between airflow and lung sound amplitude in normal subjects. Chest 86(2):225–229CrossRefGoogle Scholar
  26. 26.
    Kompis M, Pasterkamp H, Oh Y, Wodicka GR (1997) Distribution of inspiratory and expiratory respiratory sound intensity on the surface of the human thorax. Engineering in Medicine and Biology Society, 1997 Proceedings of the 19th Annual International Conference of the IEEE 5:2047-2050Google Scholar
  27. 27.
    Kiyokawa H, Pasterkamp H (2002) Volume-dependent variations of regional lung sound, amplitude and phase. J Appl Physiol 93:1030–1038CrossRefGoogle Scholar
  28. 28.
    Mineshita M, Kida H, Handa H, Nishine H, Furuya N, Nobuyama S, Inoue T, Matsuoka S, Miyazawa T (2014) The correlation between lung sound distribution and pulmonary function in COPD patients. PLoS One 9(9):e107506CrossRefGoogle Scholar
  29. 29.
    Oliveira A, Sen I, Kahya YP, Afreixo V, Marques A (2016) Computerised respiratory sounds can differentiate smokers and non-smokers. J Clin Monit Comput:1–10Google Scholar
  30. 30.
    Piirila P, Sovijarvi ARA, Kaisla T, Rajala H-M, Katila T (1991) Crackles in patients with fibrosing alveolitis, bronchiectasis, COPD, and heart failure. Chest 99(5):1076–1083CrossRefGoogle Scholar
  31. 31.
    Schreur HJ, Diamant Z, Vanderschoot J, Zwinderman AH, Dijkman JH, Sterk PJ (1996) Lung sounds during allergen-induced asthmatic responses in patients with asthma. Am J Respir Crit Care Med 153(5):1474–1480CrossRefGoogle Scholar
  32. 32.
    Ono H, Taniguchi Y, Shinoda K, Sakamoto T, Kudoh S, Gemma A (2009) Evaluation of the usefulness of spectral analysis of inspiratory lung sounds recorded with phonopneumography in patients with interstitial pneumonia. J Nippon Med Sch 76(2):67–75CrossRefGoogle Scholar
  33. 33.
    Piirila P, Lehtola H, Zitting A, Kivisaari L, Koskinen H, Luukkonen R, Salo SP, Vehmas T, Nordman H, Sovijarvi ARA (2000) Lung sounds in asbestos induced pulmonary disorders. Eur Respir J 16(5):901–908CrossRefGoogle Scholar
  34. 34.
    Fiz JA, Jane R, Salvatella D, Izquierdo J, Lores L, Caminal P, Morera J (1999) Analysis of tracheal sounds during forced exhalation in asthma patients and normal subjects: bronchodilator response effect. Chest 116(3):633–638CrossRefGoogle Scholar
  35. 35.
    Dosani R, Kraman SS (1983) Lung sound intensity variability in normal men. A contour phonopneumographic study. Chest 83(4):628–631CrossRefGoogle Scholar
  36. 36.
    O’Donnell DM, Kraman SS (1982) Vesicular lung sound amplitude mapping by automated flow-gated phonopneumography. J Appl Physiol Respir Environ Exerc Physiol 53(3):603–609Google Scholar
  37. 37.
    Ploysongsang Y, Martin RR, Ross WRD, Loudon RG, Macklem PT (1977) Breath sounds and regional ventilation. Am Rev Respir Dis 116:187–199Google Scholar
  38. 38.
    Kraman SS (1983) Lung sounds - relative sites of origin and comparative amplitudes in normal subjects. Lung 161(1):57–64CrossRefGoogle Scholar
  39. 39.
    Schreur HJ, Vanderschoot J, Zwinderman AH, Dijkman JH, Sterk PJ (1995) The effect of methacholine-induced acute airway narrowing on lung sounds in normal and asthmatic subjects. Eur Respir J 8(2):257–265CrossRefGoogle Scholar
  40. 40.
    Schreur HJW, Vanderschoot J, Zwinderman AH, Dijkman JH, Sterk PJ (1994) Abnormal lung sounds in patients with asthma during episodes with normal lung function. Chest 106(1):91–99CrossRefGoogle Scholar
  41. 41.
    Ishimatsu A, Nakano H, Nogami H, Yoshida M, Iwanaga T, Hoshino T (2015) Breath sound intensity during tidal breathing in COPD patients. Internal medicine (Tokyo, Japan) 54(10):1183–1191CrossRefGoogle Scholar
  42. 42.
    Schreur H, Sterk P, Vanderschoot J, Klink H, Vollenhoven E, Dijkman J (1992) Lung sound intensity in patients with emphysema and in normal subjects at standardised airflows. Thorax 47(9):674–679CrossRefGoogle Scholar
  43. 43.
    Nath AR, Capel LH (1974) Inspiratory crackles and mechanical events of breathing. Thorax 29(6):695–698CrossRefGoogle Scholar
  44. 44.
    Forgacs P (1967) Crackles and wheezes. Lancet 2(7508):203–205CrossRefGoogle Scholar
  45. 45.
    Forgacs P (1978) Lung Sounds. Bailliere Tindall, LondonGoogle Scholar
  46. 46.
    Fredberg JJ, Holford SK (1983) Discrete lung sounds: crackles (rales) as stress-relaxation quadrupoles. J Acoust Soc Am 73(3):1036–1046CrossRefGoogle Scholar
  47. 47.
    Piirila P, Sovijarvi ARA (1995) Crackles: recording, analysis and clinical significance. Eur Respir J 8(12):2139–2148CrossRefGoogle Scholar
  48. 48.
    Kiyokawa H, Geenberg M, Shirota K, Pasterkamp H (2001) Auditory detection of simulated crackles in breath sounds. Chest 119:1886–1892CrossRefGoogle Scholar
  49. 49.
    Vyshedskiy A, Alhashem RM, Paciej R, Ebril M, Rudman I, Fredberg JJ, Murphy R (2009) Mechanism of inspiratory and expiratory crackles. Chest 135(1):156–164CrossRefGoogle Scholar
  50. 50.
    Baughman RP, Shipley RT, Loudon RG, Lower EE (1991) Crackles in interstitial lung disease. Comparison of sarcoidosis and fibrosing alveolitis. Chest 100(1):96–101CrossRefGoogle Scholar
  51. 51.
    Nath AR, Capel LH (1974) Inspiratory crackles - early and late. Thorax 29(2):223–227CrossRefGoogle Scholar
  52. 52.
    Kompis M, Pasterkamp H, Wodicka GR (2001) Acoustic imaging of the human chest. Chest 120(4):1309–1321CrossRefGoogle Scholar
  53. 53.
    Workum P, Holford SK, Delbono EA, Murphy RL (1982) The prevalence and character of crackles (rales) in young women without significant lung disease. Am Rev Respir Dis 126(5):921–923PubMedGoogle Scholar
  54. 54.
    Thacker RE, Kraman SS (1982) The prevalence of auscultatory crackles in subjects without lung disease. Chest 81(6):672–674CrossRefGoogle Scholar
  55. 55.
    Bettencourt PE, Del Bono EA, Spiegelman D, Hertzmark E, Murphy RL Jr (1994) Clinical utility of chest auscultation in common pulmonary diseases. Am J Respir Crit Care Med 150(5 Pt 1):1291–1297CrossRefGoogle Scholar
  56. 56.
    Murphy RLH, Vyshedskiy A, Power-Charnitsky V-A, Bana DS, Marinelli PM, Wong-Tse A, Paciej R (2004) Automated lung sound analysis in patients with pneumonia. Respir Care 49(12):1490–1497PubMedGoogle Scholar
  57. 57.
    Murphy RLH (2008) In defense of the stethoscope. Respir Care 53(3):355–369PubMedPubMedCentralGoogle Scholar
  58. 58.
    Jacome C, Oliveira A, Marques A (2015) Computerized respiratory sounds: a comparison between patients with stable and exacerbated COPD. Clin Respir J.  https://doi.org/10.1111/crj.12392
  59. 59.
    Munakata M, Ukita H, Doi I, Ohtsuka Y, Masaki Y, Homma Y, Kawakami Y (1991) Spectral and waveform characteristics of fine and coarse crackles. Thorax 46(9):651–657CrossRefGoogle Scholar
  60. 60.
    Marques A, Bruton A, Barney A, Hall A (2012) Are crackles an appropriate outcome measure for airway clearance therapy? Respir Care 57(9):1468–1475CrossRefGoogle Scholar
  61. 61.
    Ponte DF, Moraes R, Hizume DC, Alencar AM (2013) Characterization of crackles from patients with fibrosis, heart failure and pneumonia. Med Eng Phys 35(4):448–456CrossRefGoogle Scholar
  62. 62.
    Gurung A, Scrafford CG, Tielsch JM, Levine OS, Check W (2011) Computerized lung sound analysis as diagnostic aid for the detection of abnormal lung sounds: a systematic review and meta-analysis. Respir Med 105(9):1396–1403CrossRefGoogle Scholar
  63. 63.
    Morillo DS, Leon Jimenez A, Moreno SA (2013) Computer-aided diagnosis of pneumonia in patients with chronic obstructive pulmonary disease. J Am Med Inform Assoc 20(e1):2012–001171Google Scholar
  64. 64.
    Piirila P (1992) Changes in crackle characteristics during the clinical course of pneumonia. Chest 102(1):176–183CrossRefGoogle Scholar
  65. 65.
    Sánchez Morillo D, Astorga Moreno S, Fernández Granero MÁ, León Jiménez A (2013) Computerized analysis of respiratory sounds during COPD exacerbations. Comput Biol Med 43(7):914–921CrossRefGoogle Scholar
  66. 66.
    Wang Z, Xiong YX (2012) Lung sound patterns help to distinguish congestive heart failure, chronic obstructive pulmonary disease, and asthma exacerbations. Acad Emerg Med 19(1):79–84CrossRefGoogle Scholar
  67. 67.
    Shirai F, Kudoh S, Shibuya A, Sada K, Mikami R (1981) Crackles in asbestos workers: auscultation and lung sound analysis. Br J Dis Chest 75(4):386–396CrossRefGoogle Scholar
  68. 68.
    Urquhart RB, McGhee J, Macleod JES, Banham SW, Moran F (1981) The diagnostic value of pulmonary sounds: a preliminary study by computer-aided analysis. Comput Biol Med 11(3):129–139CrossRefGoogle Scholar
  69. 69.
    Beck R, Elias N, Shoval S, Tov N, Talmon G, Godfrey S, Bentur L (2007) Computerized acoustic assessment of treatment efficacy of nebulized epinephrine and albuterol in RSV bronchiolitis. BMC Pediatr 7(22):1–6Google Scholar
  70. 70.
    Marques A, Oliveira A, Jacome C (2014) Computerized adventitious respiratory sounds as outcome measures for respiratory therapy: a systematic review. Respir Care 59(5):765–776.  https://doi.org/10.4187/respcare.02765 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Hoevers J, Loudon RG (1990) Measuring crackles. Chest 98(5):1240–1243CrossRefGoogle Scholar
  72. 72.
    Epler GR, Carrington CB, Gaensler EA (1978) Crackles (rales) in the interstitial pulmonary diseases. Chest 73(3):333–339CrossRefGoogle Scholar
  73. 73.
    Sovijarvi AR, Piirila P, Luukkonen R (1996) Separation of pulmonary disorders with two-dimensional discriminant analysis of crackles. Clin Physiol 16(2):171–181CrossRefGoogle Scholar
  74. 74.
    Workum P, DelBono EA, Holford SK, Murphy RLH Jr (1986) Observer agreement, chest auscultation, and crackles in asbestos-exposed workers. Chest 89(1):27–29CrossRefGoogle Scholar
  75. 75.
    Murphy RL Jr, Gaensler EA, Holford SK, Del Bono EA, Epler G (1984) Crackles in the early detection of asbestosis. Am Rev Respir Dis 129(3):375–379PubMedGoogle Scholar
  76. 76.
    Al Jarad N, Davies SW, Logan-Sinclair R, Rudd RM (1994) Lung crackle characteristics in patients with asbestosis, asbestos-related pleural disease and left ventricular failure using a time-expanded waveform analysis--a comparative study. Respir Med 88(1):37–46CrossRefGoogle Scholar
  77. 77.
    Deguchi F, Hirakawa S, Gotoh K, Yagi Y, Ohshima S (1993) Prognostic significance of posturally induced crackles. Long-term follow-up of patients after recovery from acute myocardial infarction. Chest 103(5):1457–1462CrossRefGoogle Scholar
  78. 78.
    Akasaka K, Konno K, Ono Y, Mue S, Abe C (1975) Acoustical studies on respiratory sounds in asthmatic patients. Tohoku J Exp Med 117(4):323–333CrossRefGoogle Scholar
  79. 79.
    Meslier N, Charbonneau G, Racineux JL (1995) Wheezes. Eur Respir J 8(11):1942–1948CrossRefGoogle Scholar
  80. 80.
    Beck R, Gavriely N (1990) The reproducibility of forced expiratory wheezes. Am Rev Respir Dis 141(6):1418–1422CrossRefGoogle Scholar
  81. 81.
    Grotberg JB, Gavriely N (1989) Flutter in collapsible tubes: a theoretical model of wheezes. J Appl Physiol 66(5):2262–2273CrossRefGoogle Scholar
  82. 82.
    Gavriely N, Kelly KB, Grotberg JB, Loring SH (1985) Forced expiratory wheezes are a manifestation of airway flow limitation. J Appl Physiol 62(6):2398–2403CrossRefGoogle Scholar
  83. 83.
    Gavriely N, Shee TR, Cugell DW, Grotberg JB (1985) Flutter in flow-limited collapsible tubes: a mechanism for generation of wheezes. J Appl Physiol 66(5):2251–2261CrossRefGoogle Scholar
  84. 84.
    Baughman RP, Loudon RG (1985) Lung sound analysis for continuous evaluation of airflow obstruction in asthma. Chest 88(3):364–368CrossRefGoogle Scholar
  85. 85.
    Oud M, Dooijes EH, van der Zee JS (2000) Asthmatic airways obstruction assessment based on detailed analysis of respiratory sound spectra. IEEE 47(11):1450–1455Google Scholar
  86. 86.
    Yi GA (2004) A software toolkit for acoustic respiratory analysis. Massachusetts Institute of Technology, MassachusettsGoogle Scholar
  87. 87.
    Fiz J, Jané R, Homs A, Izquierdo J, García M, Morera J (2002) Detection of wheezing during maximal forced exhalation in patients with obstructed airways. Chest 122(1):186–191CrossRefGoogle Scholar
  88. 88.
    Baughman RP, Loudon RG (1984) Quantitation of wheezing in acute asthma. Chest 86(5):718–722CrossRefGoogle Scholar
  89. 89.
    Sanchez I, Powell RE, Pasterkamp H (1993) Wheezing and airflow obstruction during methacholine challenge in children with cystic fibrosis and in normal children. Am Rev Respir Dis 147(3):705–709CrossRefGoogle Scholar
  90. 90.
    Bentur L, Beck R, Shinawi M, Naveh T, Gavriely N (2003) Wheeze monitoring in children for assessment of nocturnal asthma and response to therapy. Eur Respir J 21(4):621–626CrossRefGoogle Scholar
  91. 91.
    Bentur L, Beck R, Berkowitz D, Hasanin J, Berger I, Elias N, Gavriely N (2004) Adenosine bronchial provocation with computerized wheeze detection in young infants with prolonged cough: correlation with long-term follow-up. Chest 126(4):1060–1065CrossRefGoogle Scholar
  92. 92.
    Baughman RP, Loudon RG (1988) The utility of the estimated Tw/Ttot in evaluating a long acting sympathomimetic agent used for nocturnal asthma. Ann R Chron 5:157–160Google Scholar
  93. 93.
    Cortes S, Jane R, Fiz JA, Morera J (2005) Monitoring of wheeze duration during spontaneous respiration in asthmatic patients. Conf Proc IEEE Eng Med Biol Soc 6:6141–6144PubMedGoogle Scholar
  94. 94.
    Fiz JA, Jane R, Izquierdo J, Homs A, Garcia MA, Gomez R, Monso E, Morera J (2006) Analysis of forced wheezes in asthma patients. Respiration 73(1):55–60CrossRefGoogle Scholar
  95. 95.
    Jacome C, Marques A (2015) Computerized respiratory sounds in patients with COPD: a systematic review. COPD 12(1):104–112.  https://doi.org/10.3109/15412555.2014.908832 CrossRefPubMedGoogle Scholar
  96. 96.
    Seemungal TA, Donaldson GC, Bhowmik A, Jeffries DJ, Wedzicha JA (2000) Time course and recovery of exacerbations in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 161(5):1608–1613CrossRefGoogle Scholar
  97. 97.
    Oliveira A, Pinho C, Dinis J, Oliveira D, Marques A (2013) Automatic wheeze detection and lung function evaluation: a preliminary study. In: Stacey D, Solé-Casals J, Fred A, Gamboa H (eds) Healthinf - 6th International Conference on Health Informatics, Barcelona, pp 323–326Google Scholar
  98. 98.
    Dinis J, Oliveira A, Pinho C, Campos G, Rodrigues J, Marques A (2013) Automatic wheeze and respiratory phase detectors to evaluate respiratory physiotherapy in LRTI: a preliminary study. In: Stacey D, Solé-Casals J, Fred A, Gamboa H (eds) Healthinf - 6th International Conference on Health Informatics, Barcelona, pp 233–238Google Scholar
  99. 99.
    Postiaux G, Louis J, Labasse HC, Gerroldt J, Kotik AC, Lemuhot A, Patte C (2011) Evaluation of an alternative chest physiotherapy method in infants with respiratory syncytial virus bronchiolitis. Respir Care 56(7):989–994CrossRefGoogle Scholar
  100. 100.
    Gomes EL, Postiaux G, Medeiros DR, Monteiro KK, Sampaio LM, Costa D (2012) Chest physical therapy is effective in reducing the clinical score in bronchiolitis: randomized controlled trial. Rev Bras Fisioter 16(3):241–247CrossRefGoogle Scholar
  101. 101.
    Paciej R, Vyshedskiy A, Bana D, Murphy R (2004) Squawks in pneumonia. Thorax 59(2):177–178CrossRefGoogle Scholar
  102. 102.
    Pasterkamp H, Brand PL, Everard M, Garcia-Marcos L, Melbye H, Priftis KN (2016) Towards the standardisation of lung sound nomenclature. Eur Respir J 47(3):724–732CrossRefGoogle Scholar
  103. 103.
    Charbonneau G, Ademovic E, Cheetham B, Malmberg L, Vanderschoot J, Sovijärvi A (2000) Basic techniques for respiratory sound analysis. Eur Respir Rev 10(77):625–635Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Lab 3R—Respiratory Research and Rehabilitation Laboratory, School of Health SciencesUniversity of Aveiro (ESSUA)AveiroPortugal
  2. 2.Institute for Research in Biomedicine (iBiMED)University of AveiroAveiroPortugal

Personalised recommendations