Advertisement

Secondary Metabolites of Basidiomycetes

  • Anja Schüffler
Chapter
Part of the The Mycota book series (MYCOTA, volume 15)

Abstract

Basidiomycetes, a major class of higher fungi adapted to many different climates, habitats, and substrates, have developed a rich and very diverse secondary metabolism. Its products differ in biogenetic origin and structure remarkably from the metabolites of ascomycetes or other prolific producers of secondary metabolites like actinomycetes or myxobacteria. There are, however, some similarities to the products of plants, especially with regard to some polyketides, acetylenes, and sesquiterpenoids. It is noteworthy that many basidiomycete metabolites exhibit interesting biological activities, which in some cases led to the development of very successful plant protectants or antibiotics for human and veterinary uses.

References

  1. Abraham W-R (2001) Bioactive sesquiterpenes produced by fungi: are they useful for humans as well? Curr Med Chem 8:583–606. https://doi.org/10.2174/0929867013373147 PubMedCrossRefGoogle Scholar
  2. Agger S, Lopez-Gallego F, Schmidt-Dannert C (2009) Diversity of sesquiterpene synthases in the basidiomycete Coprinus cinereus. Mol Microbiol 72:1181–1195. https://doi.org/10.1111/j.1365-2958.2009.06717.x PubMedPubMedCentralCrossRefGoogle Scholar
  3. Andernach L, Opatz T (2014) Assignment of the absolute configuration and total synthesis of (+)-caripyrin. Eur J Org Chem 2014:4780–4784. https://doi.org/10.1002/ejoc.201402540 CrossRefGoogle Scholar
  4. Aqueveque P, Anke T, Sterner O (2002) The himanimides, new bioactive compounds from Serpula himantioides (Fr.)Karst. Z Naturforsch C J Biosci 57:257–262. https://doi.org/10.1515/znc-2002-3-410 Google Scholar
  5. Asakawa Y, Hashimoto T (1998) Biologically active substances of Japanese inedible mushrooms. Heterocycles 47:1067. https://doi.org/10.3987/REV-97-SR(N)6 CrossRefGoogle Scholar
  6. Asakawa Y, Hashimoto T, Mizuno Y et al (1992) Cryptoporic acids A-G, drimane-type sesquiterpenoid ethers of isocitric acid from the fungus Cryptoporus volvatus. Phytochemistry 31:579–592. https://doi.org/10.1016/0031-9422(92)90042-O CrossRefGoogle Scholar
  7. Ayer WA, Cruz ER (1993) The tremulanes, a new group of sesquiterpenes from the aspen rotting fungus Phellinus tremulae. J Org Chem 58(26):7529–7534CrossRefGoogle Scholar
  8. Ayer WA, Shan R, Trifonov LS, Hutchison LJ (1998) Sesquiterpenes from the nematicidal fungus Clitocybula oculus in honour of professor G. H. Neil Towers 75th birthday. Phytochemistry 49:589–592. https://doi.org/10.1016/S0031-9422(98)00173-3 CrossRefGoogle Scholar
  9. Bai R, Zhang CC, Yin X et al (2015) Striatoids A-F, cyathane diterpenoids with neurotrophic activity from cultures of the fungus Cyathus striatus. J Nat Prod 78:783–788. https://doi.org/10.1021/np501030r PubMedCrossRefGoogle Scholar
  10. Basavaiah D, Devendar B, Aravindu K, Veerendhar A (2010) A facile one-pot transformation of Baylis-Hillman adducts into unsymmetrical disubstituted maleimide and maleic anhydride frameworks: a facile synthesis of himanimide A. Chem Eur J 16(2031–2035):S2031/1–S2031/59. https://doi.org/10.1002/chem.200902887 Google Scholar
  11. Baumann C, Bröckelmann M, Fugmann B et al (1993) Haematopodin, an unusual pyrroloquinoline derivative isolated from the fungus Mycena haematopus, agaricales. Angew Chem Int Ed Eng 32:1087–1089. https://doi.org/10.1002/anie.199310871 CrossRefGoogle Scholar
  12. Bertinetti B, Scandiani M, Cabrera G (2011) Analogs of antifungal indoles isolated from Aporpium caryae with activity against sudden-death syndrome of soybean. Am J Plant Sci 2:245–254. https://doi.org/10.4236/ajps.2011.22026 CrossRefGoogle Scholar
  13. Bette E, Otto A, Dräger T et al (2015) Isolation and asymmetric total synthesis of fungal secondary metabolite hygrophorone B12. Eur J Org Chem 2015:2357–2365. https://doi.org/10.1002/ejoc.201403455 CrossRefGoogle Scholar
  14. Borgström B (1988) Mode of action of tetrahydrolipstatin: a derivative of the naturally occurring lipase inhibitor lipstatin. Biochim Biophys Acta 962:308–316PubMedCrossRefGoogle Scholar
  15. Breheret S, Talou T, Rapior S, Bessiere J-M (1999) Geosmin, a sesquiterpenoid compound responsible for the musty-earthy odor of Cortinarius herculeus, Cystoderma amianthinum, and Cy. carcharias. Mycologia 91:117. https://doi.org/10.2307/3761199 CrossRefGoogle Scholar
  16. Bresinsky A, Besl H (1985) Giftpilze. Wissenschaftliche Verlagsgesellschaft, StuttgartGoogle Scholar
  17. Bunyapaiboonsri T, Yoiprommarat S, Nopgason R et al (2014) Cadinane sesquiterpenoids from the basidiomycete Stereum cf. sanguinolentum BCC 22926. Phytochemistry 105:123–128. https://doi.org/10.1016/j.phytochem.2014.06.006 PubMedCrossRefGoogle Scholar
  18. Cabrera GM, Roberti MJ, Wright JE, Seldes AM (2002) Cryptoporic and isocryptoporic acids from the fungal cultures of Polyporus arcularius and P. ciliatus. Phytochemistry 61:189–193. https://doi.org/10.1016/S0031-9422(02)00221-2 PubMedCrossRefGoogle Scholar
  19. Cali V, Spatafora C, Tringali C (2004) Sarcodonins and sarcoviolins, bioactive polyhydroxy-p-terphenyl pyrazinediol dioxide conjugates from fruiting bodies of the basidiomycete Sarcodon leucopus. Eur J Org Chem 2004(3):592–599. https://doi.org/10.1002/ejoc.200300407 CrossRefGoogle Scholar
  20. Cazal CM, Choosang K, Severino VGP et al (2010) Evaluation of effect of triterpenes and limonoids on cell growth, cell cycle and apoptosis in human tumor cell lines. Anti Cancer Agents Med Chem 10:769–776CrossRefGoogle Scholar
  21. Chen H-P, Zhao Z-Z, Yin R-H et al (2014) Six new vibralactone derivatives from cultures of the fungus Boreostereum vibrans. Nat Prod Bioprospect 4:271–276. https://doi.org/10.1007/s13659-014-0029-z PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chen CC, Tzeng TT, Chen CC et al (2016a) Erinacine S, a rare sesterterpene from the mycelia of Hericium erinaceus. J Nat Prod 79:438–441. https://doi.org/10.1021/acs.jnatprod.5b00474 PubMedCrossRefGoogle Scholar
  23. Chen H-P, Zhao Z-Z, Li Z-H et al (2016b) Novel natural oximes and oxime esters with a vibralactone backbone from the basidiomycete Boreostereum vibrans. ChemistryOpen 5:142–149. https://doi.org/10.1002/open.201500198 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Cheng C-F, Lai Z-C, Lee Y-J (2008) Total synthesis of (±)-camphorataimides and (±)-himanimides by NaBH4/Ni(OAc)2 or Zn/AcOH stereoselective reduction. Tetrahedron 64:4347–4353. https://doi.org/10.1016/j.tet.2008.02.077 CrossRefGoogle Scholar
  25. Chepkirui C, Richter C, Matasyoh JC, Stadler M (2016) Monochlorinated calocerins A-D and 9-oxostrobilurin derivatives from the basidiomycete Favolaschia calocera. Phytochemistry 132:95–101. https://doi.org/10.1016/j.phytochem.2016.10.001 PubMedCrossRefGoogle Scholar
  26. Chudzik M, Korzonek-Szlacheta I, Król W (2015) Triterpenes as potentially cytotoxic compounds. Molecules 20:1610–1625. https://doi.org/10.3390/molecules20011610 PubMedCrossRefGoogle Scholar
  27. Clericuzio M, Sterner O (1997) Conversion of velutinal esters in the fruit bodies of Russula cuprea. Phytochemistry 45:1569–1572. https://doi.org/10.1016/S0031-9422(97)00259-8 CrossRefGoogle Scholar
  28. Colland F (2010) The therapeutic potential of deubiquitinating enzyme inhibitors. Biochem Soc Trans 38:137–143. https://doi.org/10.1042/BST0380137 PubMedCrossRefGoogle Scholar
  29. Daum RS, Kar S, Kirkpatrick P (2007) Retapamulin. Nat Rev Drug Discov 6:865–866. https://doi.org/10.1038/nrd2442 CrossRefGoogle Scholar
  30. Davoli P, Mucci A, Schenetti L, Weber RWS (2005) Laetiporic acids, a family of non-carotenoid polyene pigments from fruit-bodies and liquid cultures of Laetiporus sulphureus (Polyporales, Fungi). Phytochemistry 66:817–823. https://doi.org/10.1016/j.phytochem.2005.01.023 PubMedCrossRefGoogle Scholar
  31. De Silva DD, Rapior S, Sudarman E et al (2013) Bioactive metabolites from macrofungi: ethnopharmacology, biological activities and chemistry. Fungal Divers 62:1–40. https://doi.org/10.1007/s13225-013-0265-2 CrossRefGoogle Scholar
  32. Dekker FJ, Rocks O, Vartak N et al (2010) Small-molecule inhibition of APT1 affects Ras localization and signaling. Nat Chem Biol 6:449–456. https://doi.org/10.1038/nchembio.362 PubMedCrossRefGoogle Scholar
  33. Dong M, Chen S-P, Kita K et al (2009) Anti-proliferative and apoptosis-inducible activity of Sarcodonin G from Sarcodon scabrosus in HeLa cells. Int J Oncol 34:201–207. https://doi.org/10.3892/ijo_00000142 PubMedGoogle Scholar
  34. Engler-Lohr M, Ankea T, Hellwig V, Steglich W (1999) Noroudemansin A, a new antifungal antibiotic from Pterula species 82168 and three semisynthetic derivatives. Z Naturforsch C J Biosci 54:163–168Google Scholar
  35. Evans L, Hedger J, O’Donnell G et al (2010) Structure elucidation of some highly unusual tricyclic cis-caryophyllane sesquiterpenes from Marasmiellus troyanus. Tetrahedron Lett 51:5493–5496. https://doi.org/10.1016/j.tetlet.2010.08.036 CrossRefGoogle Scholar
  36. Fabian K, Lorenzen K, Anke T et al (1998) Five new bioactive sesquiterpenes from the fungus Radulomyces confluens (Fr.) Christ. Z Naturforsch C J Biosci 53:939–945Google Scholar
  37. Fang S-T, Zhang L, Li Z-H et al (2010) Cyathane diterpenoids and nitrogenous terphenyl derivative from the fruiting bodies of basidiomycete Phellodon niger. Chem Pharm Bull 58:1176–1179. https://doi.org/10.1248/cpb.58.1176 PubMedCrossRefGoogle Scholar
  38. Fang S-T, Feng T, Zhang L et al (2011) Cyathane diterpenoids from fruiting bodies of Phellodon niger. Nat Prod Bioprospect 1:37–40. https://doi.org/10.1007/s13659-011-0002-z PubMedCentralCrossRefGoogle Scholar
  39. Feng T, Li Z-H, Dong Z-J et al (2011) Non-isoprenoid botryane sesquiterpenoids from basidiomycete Boletus edulis and their cytotoxic activity. Nat Prod Bioprospect 1(1):29–32. https://doi.org/10.1007/s13659-011-0005-9 PubMedCentralCrossRefGoogle Scholar
  40. Feng Y, Wang L, Niu S et al (2012) Naphthalenones from a Perenniporia sp. inhabiting the larva of a phytophagous weevil, Euops chinesis. J Nat Prod 75:1339–1345. https://doi.org/10.1021/np300263u PubMedCrossRefGoogle Scholar
  41. Florey H, Chain E, Heatley N et al (1949) Antibiotics. A survey of penicillin, streptomycin, and other antimicrobial substances from fungi, actinomycetes, bacteria, and plants. Oxford University Press, OxfordGoogle Scholar
  42. Fraga BM (2009) Natural sesquiterpenoids. Nat Prod Rep 26:1125–1155. https://doi.org/10.1039/B908720F PubMedCrossRefGoogle Scholar
  43. Fraga BM (2010) Natural sesquiterpenoids. Nat Prod Rep 27:1681–1708. https://doi.org/10.1039/C0NP00007H PubMedCrossRefGoogle Scholar
  44. Fraga BM (2011) Natural sesquiterpenoids. Nat Prod Rep 30:1226. https://doi.org/10.1039/c3np70047j CrossRefGoogle Scholar
  45. Fraga BM (2012) Natural sesquiterpenoids. Nat Prod Rep 29:1334–1366. https://doi.org/10.1039/C2NP20074K PubMedCrossRefGoogle Scholar
  46. Fraga BM (2013) Natural sesquiterpenoids. Nat Prod Rep 30:1226. https://doi.org/10.1039/c3np70047j PubMedCrossRefGoogle Scholar
  47. Froufe HJC, Abreu RMV, Ferreira ICFR (2013) Virtual screening of low molecular weight mushrooms compounds as potential Mdm2 inhibitors. J Enzyme Inhib Med Chem 28:569–575. https://doi.org/10.3109/14756366.2012.658787 PubMedCrossRefGoogle Scholar
  48. Fukuda T, Tomoda H (2013) Tylopilusin C, a new diphenolic compound from the fruiting bodies of Tylopilus eximinus. J Antibiot 66:355–357. https://doi.org/10.1038/ja.2013.23 PubMedCrossRefGoogle Scholar
  49. Fukuda T, Nagai K, Tomoda H (2012) (±)-Tylopilusins, diphenolic metabolites from the fruiting bodies of Tylopilus eximius. J Nat Prod 75:2228–2231. https://doi.org/10.1021/np300428r PubMedCrossRefGoogle Scholar
  50. Gao L, Han J, Si J et al (2017) Cryptoporic acid E from Cryptoporus volvatus inhibits influenza virus replication in vitro. Antivir Res 143:106–112. https://doi.org/10.1016/j.antiviral.2017.02.010 PubMedCrossRefGoogle Scholar
  51. Gehrt A, Erkel G, Anke T, Sterner O (1998) Nitidon, a new bioactive metabolite from the basidiomycete Junghuhnia nitida (Pers.: Fr.) Ryv. Z Naturforsch C J Biosci 53:89–92Google Scholar
  52. Geraci C, Neri P, Paterno C et al (2000) An unusual nitrogenous terphenyl derivative from fruiting bodies of the basidiomycete Sarcodon leucopus. J Nat Prod 63:347–351. https://doi.org/10.1021/np990293d PubMedCrossRefGoogle Scholar
  53. Gilardoni G, Clericuzio M, Tosi S et al (2007) Antifungal acylcyclopentenediones from fruiting bodies of Hygrophorus chrysodon. J Nat Prod 70:137–139. https://doi.org/10.1021/np060512c PubMedCrossRefGoogle Scholar
  54. Gill M (1999) Pigments of fungi (Macromycetes). Nat Prod Rep 16:301–317. https://doi.org/10.1039/a705730j CrossRefGoogle Scholar
  55. Gill M, Steglich W (1987) Pigments of fungi (Macromycetes). In: Zechmeier L (ed) Progress in the chemistry of organic natural products, vol 51. Springer, Heidelberg, pp 1–297Google Scholar
  56. Hadváry P, Lengsfeld H, Wolfer H (1988) Inhibition of pancreatic lipase in vitro by the covalent inhibitor tetrahydrolipstatin. Biochem J 256:357–361PubMedPubMedCentralCrossRefGoogle Scholar
  57. Han J-J, Bao L, He L-W et al (2013a) Phaeolschidins A-E, five hispidin derivatives with antioxidant activity from the fruiting body of Phaeolus schweinitzii collected in the tibetan plateau. J Nat Prod 76:1448–1453. https://doi.org/10.1021/np400234u PubMedCrossRefGoogle Scholar
  58. Han JJ, Chen YH, Bao L et al (2013b) Anti-inflammatory and cytotoxic cyathane diterpenoids from the medicinal fungus Cyathus africanus. Fitoterapia 84:22–31. https://doi.org/10.1016/j.fitote.2012.10.001 PubMedCrossRefGoogle Scholar
  59. Han J-J, Zhang L, Xu J-K et al (2015) Three new cyathane diterpenoids from the medicinal fungus Cyathus africanus. J Asian Nat Prod Res 17:541–549. https://doi.org/10.1080/10286020.2015.1043900 PubMedCrossRefGoogle Scholar
  60. Hanpude P, Bhattacharya S, Dey A, Maiti T (2015) Critical review: Deubiquitinating enzymes in cellular signaling and disease regulation enzymatic mechanism of DUBs. IUBMB Life 67:544–555. https://doi.org/10.1002/iub.1402 PubMedCrossRefGoogle Scholar
  61. Hasegawa M, Akabori Y, Akabori S (1974) New indanone compounds from Onychium japonicum. Phytochemistry 13:509–511. https://doi.org/10.1016/S0031-9422(00)91246-9 CrossRefGoogle Scholar
  62. Hashimoto T, Tori M, Mizuno Y, Asakawa Y (1987) Cryptoporic acids A and B, novel bitter drimane sesquiterpenoid ethers of isocitric acid, from the fungus Cryptoporus volvatus (Polyporaceae). Tetrahedron Lett 28:6303–6304. https://doi.org/10.1016/S0040-4039(01)91358-9 CrossRefGoogle Scholar
  63. Hashimoto T, Tori M, Mizuno Y et al (1989) The superoxide release inhibitors, cryptoporic acids C, D, and E; dimeric drimane sesquiterpenoid ethers of isocitric acid from the fungus Cryptoporus volvatus. J Chem Soc Chem Commun 1989:258–259. https://doi.org/10.1039/c39890000258 CrossRefGoogle Scholar
  64. He L, Han J, Li B et al (2016) Identification of a new cyathane diterpene that induces mitochondrial and autophagy-dependent apoptosis and shows a potent in vivo anti-colorectal cancer activity. Eur J Med Chem 111:183–192. https://doi.org/10.1016/j.ejmech.2016.01.056 PubMedCrossRefGoogle Scholar
  65. Hellwig V, Dasenbrock J, Gräf C et al (2002) Calopins and cyclocalopins – bitter principles from Boletus calopus and related mushrooms. Eur J Org Chem 2002:2895–2904. https://doi.org/10.1002/1099-0690(200209)2002:17<2895::AID-EJOC2895>3.0.CO;2-S CrossRefGoogle Scholar
  66. Hendriks IA, Vertegaal ACO (2016) A comprehensive compilation of SUMO proteomics. Nat Rev Mol Cell Biol 17:581–595. https://doi.org/10.1038/nrm.2016.81 PubMedCrossRefGoogle Scholar
  67. Hill RA, Connolly JD (2015) Triterpenoids. Nat Prod Rep 32:273–327. https://doi.org/10.1039/C4NP00101J PubMedCrossRefGoogle Scholar
  68. Hirota M, Morimura K, Shibata H (2002) Anti-inflammatory compounds from the bitter mushroom, Sarcodon scabrosus. Biosci Biotechnol Biochem 66:179–184. https://doi.org/10.1271/bbb.66.179 PubMedCrossRefGoogle Scholar
  69. Hirotani M, Furuya T, Shiro M (1991) Studies on the metabolites of higher fungi. Part 10. Cryptoporic acids H and I, drimane sesquiterpenes from Ganoderma neo-japonicum and Cryptoporus volvatus. Phytochemistry 30:1555–1559. https://doi.org/10.1016/0031-9422(91)84208-A CrossRefGoogle Scholar
  70. Ho C-L, Cheng H, Chen MC-M, Ettinger DS (2015) Antroquinonol to block Ras and Rho signaling via the inhibition of protein isoprenyltransferase activity in cancer cells. J Clin Oncol 33:e18526–e18526. https://doi.org/10.1200/jco.2015.33.15_suppl.e18526 Google Scholar
  71. Högenauer G (1979) Tiamulin and pleuromutilin. In: Hahn F (ed) Mechanism of action of antibacterial agents. Springer, Berlin, Heidelberg, pp 344–360CrossRefGoogle Scholar
  72. Hoppmann CD, Kurz MD, Müller G, Toti LD (2001) Inventors; Aventis pharma Deutschland GmbH, assignee. Percyquinnin, a process for its production and its use as a pharmaceutical. European patent EP1142886 (A1)Google Scholar
  73. Hsu C-S, Chou H-H, Fang J-M (2015) A short synthesis of (±)-antroquinonol in an unusual scaffold of 4-hydroxy-2-cyclohexenone. Org Biomol Chem 13:5510–5519. https://doi.org/10.1039/C5OB00411J PubMedCrossRefGoogle Scholar
  74. Hu D, Li W, Zhao Z et al (2014) Highly unsaturated pyranone derivatives from the basidiomycete Junghuhnia nitida. Tetrahedron Lett 55:6530–6533. https://doi.org/10.1016/j.tetlet.2014.09.132 CrossRefGoogle Scholar
  75. Huang Z, Dan Y, Huang Y et al (2004) Sesquiterpenes from the mycelial cultures of Dichomitus squalens. J Nat Prod 67:2121–2123. https://doi.org/10.1021/np0497144 PubMedCrossRefGoogle Scholar
  76. Huang L, Han J, Ben-Hail D, He L, Li B, Chen Z, Wang Y, Yang Y, Liu L, Zhu Y, Shoshan-Barmatz V, Liu H, Chen Q (2015) A new fungal diterpene induces VDAC1-dependent apoptosis in bax/bak-deficient cells. J Biol Chem 290(39):23563–23578PubMedPubMedCentralCrossRefGoogle Scholar
  77. IndexFungorum Index Fungorum. www.indexfungorum.org. Accessed 20 June 2017
  78. Isaka M, Srisanoh U, Sappan M et al (2012) Sterostreins F–O, illudalanes and norilludalanes from cultures of the basidiomycete Stereum ostrea BCC 22955. Phytochemistry 79:116–120. https://doi.org/10.1016/j.phytochem.2012.04.009 PubMedCrossRefGoogle Scholar
  79. Isaka M, Chinthanom P, Danwisetkanjana K, Choeyklin R (2014a) A new cryptoporic acid derivative from cultures of the basidiomycete Poria albocincta BCC 26244. Phytochem Lett 7:97–100. https://doi.org/10.1016/j.phytol.2013.10.009 CrossRefGoogle Scholar
  80. Isaka M, Chinthanom P, Sappan M, Supothina S (2014b) Phenylglycol metabolites from cultures of the basidiomycete Mycena pruinosoviscida BCC 22723. Helv Chim Acta 97:909–914CrossRefGoogle Scholar
  81. Isaka M, Chinthanom P, Sappan M, Danwisetkanjana K (2016a) Antitubercular lanostane triterpenes from cultures of the basidiomycete Ganoderma sp. BCC 16642. J Nat Prod 79(1):161–169. https://doi.org/10.1021/acs.jnatprod.5b00826 PubMedCrossRefGoogle Scholar
  82. Isaka M, Palasarn S, Sappan M et al (2016b) Hirsutane sesquiterpenes from cultures of the basidiomycete Marasmiellus sp. BCC 22389. Nat Prod Bioprospect 6:257–260. https://doi.org/10.1007/s13659-016-0105-7 PubMedPubMedCentralCrossRefGoogle Scholar
  83. Isaka M, Palasarn S, Supothina S et al (2016c) Seco-Tremulanes from cultures of the basidiomycete Flavodon flavus BCC 17421. Helv Chim Acta 99:232–236. https://doi.org/10.1002/hlca.201500249 CrossRefGoogle Scholar
  84. Ishikawa NK, Yamaji K, Tahara S et al (2000) Highly oxidized cuparene-type sesquiterpenes from a mycelial culture of Flammulina velutipes. Phytochemistry 54:777–782. https://doi.org/10.1016/S0031-9422(00)00189-8 PubMedCrossRefGoogle Scholar
  85. Ishikawa NK, Fukushi Y, Yamaji K et al (2001) Antimicrobial cuparene-type sesquiterpenes, enokipodins C and D, from a mycelial culture of Flammulina velutipes. J Nat Prod 64:932–934. https://doi.org/10.1021/np000593r PubMedCrossRefGoogle Scholar
  86. Ito-Kobayashi M, Aoyagi A, Tanaka I et al (2008) Sterenin A, B, C and D, novel 11β-hydroxysteroid dehydrogenase type 1 inhibitors from Stereum sp. SANK 21205. J Antibiot 61:128–135. https://doi.org/10.1038/ja.2008.121 PubMedCrossRefGoogle Scholar
  87. Jaeger RJR, Spiteller P (2010) Mycenaaurin A, an antibacterial polyene pigment from the fruiting bodies of Mycena aurantiomarginata. J Nat Prod 73:1350–1354. https://doi.org/10.1021/np100155z PubMedCrossRefGoogle Scholar
  88. Jaeger RJR, Lamshöft M, Gottfried S et al (2013) HR-MALDI-MS imaging assisted screening of beta-Carboline alkaloids discovered from Mycena metata. J Nat Prod 76:127–134. https://doi.org/10.1021/np300455a PubMedCrossRefGoogle Scholar
  89. JGI (2016) Joint Genome Institute. http://genome.jgi.doe.gov/programs/fungi/index.jsf. Accessed 12 December 2016
  90. Jiang M-Y, Wang F, Yang X-L et al (2008) Derivatives of vibralactone from cultures of the basidiomycete Boreostereum vibrans. Chem Pharm Bull 56:1286–1288. https://doi.org/10.1248/cpb.56.1286 PubMedCrossRefGoogle Scholar
  91. Jiang M-Y, Zhang L, Liu R et al (2009) Speciosins A-K, oxygenated cyclohexanoids from the basidiomycete Hexagonia speciosa. J Nat Prod 72:1405–1409. https://doi.org/10.1021/np900182m PubMedCrossRefGoogle Scholar
  92. Jiang M, Zhang L, Dong Z et al (2010) Vibralactones D-F from cultures of the basidiomycete Boreostereum vibrans. Chem Pharm Bull (Tokyo) 58:113–116. https://doi.org/10.1248/cpb.58.113 CrossRefGoogle Scholar
  93. Jiang M-Y, Li Y, Wang F, Liu J-K (2011) Isoprenylated cyclohexanoids from the basidiomycete Hexagonia speciosa. Phytochemistry (Elsevier) 72:923–928. https://doi.org/10.1016/j.phytochem.2011.03.011 CrossRefGoogle Scholar
  94. Johansson M, Sterner O, Labischinski H, Anke T (2001) Coprinol, a new antibiotic cuparane from a Coprinus species. Z Naturforsch C J Biosci 56:31–34Google Scholar
  95. Jones RN, Fritsche TR, Sader HS, Ross JE (2006) Activity of retapamulin (SB-275833), a novel pleuromutilin, against selected resistant gram-positive cocci. Antimicrob Agents Chemother 50:2583–2586. https://doi.org/10.1128/AAC.01432-05 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Jülich C, Nord CL, Menkis A et al (2013) Protoilludane sesquiterpenes from the wood decomposing fungus Granulobasidium vellereum (Ellis & Cragin) Jülich. Phytochemistry 90:128–134. https://doi.org/10.1016/j.phytochem.2013.02.015 CrossRefGoogle Scholar
  97. Kahner L, Dasenbrock J, Spiteller P et al (1998) Polyene pigments from fruit-bodies of Boletus laetissimus and B. rufo-aureus (Basidiomycetes). Phytochemistry 49:1693–1697. https://doi.org/10.1016/S0031-9422(98)00319-7 PubMedCrossRefGoogle Scholar
  98. Kalb D, Lackner G, Hoffmeister D (2013) Fungal peptide synthetases: an update on functions and specificity signatures. Fungal Biol Rev 27:43–50. https://doi.org/10.1016/j.fbr.2013.05.002 CrossRefGoogle Scholar
  99. Kamo T, Imura Y, Hagio T et al (2004) Anti-inflammatory cyathane diterpenoids from Sarcodon scabrosus. Biosci Biotechnol Biochem 68:1362–1365. https://doi.org/10.1271/bbb.68.1362 PubMedCrossRefGoogle Scholar
  100. Kang H-S, Kim J-P (2016) Ostalactones A–C, β- and ε-lactones with lipase inhibitory activity from the cultured basidiomycete Stereum ostrea. J Nat Prod 79:3148–3151. https://doi.org/10.1021/acs.jnatprod.6b00647 PubMedCrossRefGoogle Scholar
  101. Kavanagh F, Hervey A, Robbins WJ (1951) Antibiotic substances from basidiomycetes: VIII. Pleurotus multilus (Fr.) Sacc. and Pleurotus passeckerianus Pilat. Proc Natl Acad Sci USA 37:570–574PubMedPubMedCentralCrossRefGoogle Scholar
  102. Kawagishi H, Zhuang C (2008) Compounds for dementia from Hericium erinaceum. Drugs Future 33:149. https://doi.org/10.1358/dof.2008.033.02.1173290 CrossRefGoogle Scholar
  103. Kawai T, Mizutani S, Enoki T et al (2005) Inventors; Takara Bio Inc., assignee. Antitumor agent. WO2005115364 A1Google Scholar
  104. Kettering M, Sterner O, Anke T (2004) Antibiotics in the chemical communication of fungi. Z Naturforsch C J Biosci 59:816–823Google Scholar
  105. Ki D-W, Kim D-W, Hwang BS et al (2015) New antioxidant sesquiterpenes from a culture broth of Coprinus echinosporus. J Antibiot 68:351–353. https://doi.org/10.1038/ja.2014.158 PubMedCrossRefGoogle Scholar
  106. Kim H-J, Vinale F, Ghisalberti EL et al (2006) An antifungal and plant growth promoting metabolite from a sterile dark ectotrophic fungus. Phytochemistry 67:2277–2280. https://doi.org/10.1016/j.phytochem.2006.07.022 PubMedCrossRefGoogle Scholar
  107. Kim KH, Moon E, Choi SU et al (2013) Lanostane triterpenoids from the mushroom Naematoloma fasciculare. J Nat Prod 76:845–851. https://doi.org/10.1021/np300801x PubMedCrossRefGoogle Scholar
  108. Kim SO, Sakchaisri K, Asami Y et al (2014) Illudins C2 and C3 stimulate lipolysis in 3T3-L1 adipocytes and suppress adipogenesis in 3T3-L1 preadipocytes. J Nat Prod 77:744–750. https://doi.org/10.1021/np400520a PubMedCrossRefGoogle Scholar
  109. Kita T, Takaya Y, Oshima Y et al (1998) Scabronines B, C, D, E, F, novel diterpenoids showing stimulating activity of nerve growth factor-synthesis, from the mushroom Sarcodon scabrosus. Tetrahedron 54:11877–11886. https://doi.org/10.1016/S0040-4020(98)83045-7 CrossRefGoogle Scholar
  110. Klaiklay S, Rukachaisirikul V, Phongpaichit S et al (2012) Flavodonfuran: a new difuranylmethane derivative from the mangrove endophytic fungus Flavodon flavus PSU-MA201. Nat Prod Res 27:1722. https://doi.org/10.1080/14786419.2012.750315
  111. Kokubun T, Scott-Brown A, Kite GC, Simmonds MSJ (2016) Protoilludane, illudane, illudalane, and norilludane sesquiterpenoids from Granulobasidium vellereum. J Nat Prod 79:1698–1701. https://doi.org/10.1021/acs.jnatprod.6b00325 PubMedCrossRefGoogle Scholar
  112. Kornsakulkarn J, Thongpanchang C, Chainoy R et al (2010) Bioactive metabolites from cultures of basidiomycete Favolaschia tonkinensis. J Nat Prod 73:759–762PubMedCrossRefGoogle Scholar
  113. Lee I, Jeong C, Cho S et al (1996) Illudins C2 and C3, new illudin C derivatives from Coprinus atramentarius ASI20013. J Antibiot 49:821–822PubMedCrossRefGoogle Scholar
  114. Lee T-H, Lee C-K, Tsou W-L et al (2007) A new cytotoxic agent from solid-state fermented mycelium of Antrodia camphorata. Planta Med 73:1412–1415. https://doi.org/10.1055/s-2007-990232 PubMedCrossRefGoogle Scholar
  115. Lee JS, Maarisit W, Abdjul DB et al (2016) Structures and biological activities of triterpenes and sesquiterpenes obtained from Russula lepida. Phytochemistry 127:63–68. https://doi.org/10.1016/j.phytochem.2016.03.014 PubMedCrossRefGoogle Scholar
  116. Levy LM, Cabrera GM, Wright JE, Seldes AM (2000) Indole alkaloids from a culture of the fungus Aporpium caryae. Phytochemistry 54:941–943. https://doi.org/10.1016/S0031-9422(00)00127-8 PubMedCrossRefGoogle Scholar
  117. Levy LM, Cabrera GM, Wright JE, Seldes AM (2003) 5H-Furan-2-ones from fungal cultures of Aporpium caryae. Phytochemistry (Elsevier) 62:239–243. https://doi.org/10.1016/S0031-9422(02)00455-7 CrossRefGoogle Scholar
  118. Li G-H, Duan M, Yu Z-F et al (2008) Stereumin A-E, sesquiterpenoids from the fungus Stereum sp. CCTCC AF 207024. Phytochemistry 69:1439–1445. https://doi.org/10.1016/j.phytochem.2008.01.012 PubMedCrossRefGoogle Scholar
  119. Li G, Liu F, Shen L et al (2011) Stereumins H-J, stereumane-type sesquiterpenes from the fungus Stereum sp. J Nat Prod 74:296–299. https://doi.org/10.1021/np100813f PubMedCrossRefGoogle Scholar
  120. Liermann JC, Schüffler A, Wollinsky B et al (2010) Hirsutane-type sesquiterpenes with uncommon modifications from three basidiomycetes. J Org Chem 75:2955–2961. https://doi.org/10.1021/jo100202b PubMedCrossRefGoogle Scholar
  121. Liermann JC, Thines E, Opatz T, Anke H (2012) Drimane sesquiterpenoids from Marasmius sp. Inhibiting the conidial germination of plant-pathogenic fungi. J Nat Prod 75:1983–1986. https://doi.org/10.1021/np300337w PubMedCrossRefGoogle Scholar
  122. Lin J, Wang R, Xu G et al (2016) New cadinane sesquiterpenoids from the basidiomycetous fungus Pholiota sp. RSC Adv 6:112527–112533. https://doi.org/10.1039/C6RA22448B CrossRefGoogle Scholar
  123. List A, Zeiler E, Gallastegui N et al (2014) Omuralide and vibralactone: differences in the proteasome-beta-lactone-gamma-lactam binding scaffold alter target preferences. Angew Chem Int Ed 53:571–574. https://doi.org/10.1002/anie.201308567 CrossRefGoogle Scholar
  124. Liu J-K (2006) Natural terphenyls: developments since 1877. Chem Rev 106:2209–2223. https://doi.org/10.1021/cr050248c PubMedCrossRefGoogle Scholar
  125. Liu D-Z (2014) A review of ergostane and cucurbitane triterpenoids of mushroom origin. Nat Prod Res 28:1099–1105. https://doi.org/10.1080/14786419.2014.900767 PubMedCrossRefGoogle Scholar
  126. Liu D-Z, Wang F, Liao T-G et al (2006) Vibralactone: a lipase inhibitor with an unusual fused β-lactone produced by cultures of the basidiomycete Boreostereum vibrans. Org Lett 8:5749–5752. https://doi.org/10.1021/ol062307u PubMedCrossRefGoogle Scholar
  127. Liu D-Z, Wang F, Liu J-K (2007) Sesquiterpenes from cultures of the basidiomycete Conocybe siliginea. J Nat Prod 70:1503–1506. https://doi.org/10.1021/np070140n PubMedCrossRefGoogle Scholar
  128. Liu D-Z, Jia R-R, Wang F, Liu J-K (2008a) A new spiroaxane sesquiterpene from cultures of the basidiomycete Pholiota adiposa. Z Naturforsch B Chem Sci 63:111–113Google Scholar
  129. Liu DZ, Wang F, Jia RR, Liu JK (2008b) A novel sesquiterpene from the basidiomycete Boletus calopus. Z Naturforsch B J Chem Sci 63:114–116Google Scholar
  130. Liu YJ, Liu Y, Zhang KQ (2008c) Xanthothone, a new nematicidal N-compound from Coprinus xanthothrix. Chem Nat Compd 44:203–205. https://doi.org/10.1007/s10600-008-9014-2 CrossRefGoogle Scholar
  131. Liu F-F, Li G-H, Yang Z-S et al (2010) Two new sesquiterpenes from the fungus Stereum sp. Helv Chim Acta 93:1737–1741. https://doi.org/10.1002/hlca.200900433 CrossRefGoogle Scholar
  132. Liu L, Shi X-W, Zong S-C et al (2012) Scabronine M, a novel inhibitor of NGF-induced neurite outgrowth from PC12 cells from the fungus Sarcodon scabrosus. Bioorg Med Chem Lett 22:2401–2406. https://doi.org/10.1016/j.bmcl.2012.02.031 PubMedCrossRefGoogle Scholar
  133. Liu L-Y, Li Z-H, Si J et al (2013) Two new sesquiterpenoids from the fungus Ceriporia alachuana. J Asian Nat Prod Res 15:300–304. https://doi.org/10.1080/10286020.2013.763798 PubMedCrossRefGoogle Scholar
  134. Long KS, Hansen LH, Jakobsen L, Vester B (2006) Interaction of pleuromutilin derivatives with the ribosomal peptidyl transferase center. Antimicrob Agents Chemother 50(4):1458–1462PubMedPubMedCentralCrossRefGoogle Scholar
  135. Lopez-Gallego F, Agger SA, Abate-Pella D et al (2010) Sesquiterpene synthases Cop4 and Cop6 from Coprinus cinereus: catalytic promiscuity and cyclization of farnesyl pyrophosphate geometric isomers. ChemBioChem 11:1093–1106. https://doi.org/10.1002/cbic.200900671 PubMedPubMedCentralCrossRefGoogle Scholar
  136. Lorenzen K, Anke T (1998) Biologically active metabolites from basidiomycetes. Curr Org Chem 2:329–364Google Scholar
  137. Lu M-C, El-Shazly M, Wu T-Y et al (2013) Recent research and development of Antrodia cinnamomea. Pharmacol Ther 139:124–156. https://doi.org/10.1016/j.pharmthera.2013.04.001 PubMedCrossRefGoogle Scholar
  138. Luana G, Fabiano S, Fabio G, Paolo G (2015) Comparing visual inspection of trees and molecular analysis of internal wood tissues for the diagnosis of wood decay fungi. Forestry 88:465–470. https://doi.org/10.1093/forestry/cpv015 CrossRefGoogle Scholar
  139. Lübken T (2006) Hygrophorone, neue antifungische Cyclopentenonderivate aus Hygrophorus-Arten. PhD thesis, University of Halle, Halle, GermanyGoogle Scholar
  140. Lübken T, Schmidt J, Porzel A et al (2004) Hygrophorones A-G: fungicidal cyclopentenones from Hygrophorus species (Basidiomycetes). Phytochemistry 65:1061–1071. https://doi.org/10.1016/j.phytochem.2004.01.023 PubMedCrossRefGoogle Scholar
  141. Lübken T, Arnold N, Wessjohann L et al (2006) Analysis of fungal cyclopentenone derivatives from Hygrophorus spp. by liquid chromatography/electrospray-tandem mass spectrometry. J Mass Spectrom 41:361–371. https://doi.org/10.1002/jms.996 PubMedCrossRefGoogle Scholar
  142. Ma B-J, Liu J-K (2005) An unusual nitrogenous terphenyl derivative from fruiting bodies of the basidiomycete Sarcodon scabrosus. Z Naturforsch B Chem Sci 60:565–568Google Scholar
  143. Ma B-J, Ruan Y (2008) Scabronine J, a new cyathane-type diterpenoid from the basidiomycete Sarcodon scabrosus. J Antibiot 61:86–88. https://doi.org/10.1038/ja.2008.115 PubMedCrossRefGoogle Scholar
  144. Ma B-J, Zhu H-J, Liu J-K (2004) Isolation and characterization of new bitter diterpenoids from the basidiomycete Sarcodon scabrosus. Helv Chim Acta 87:2877–2881. https://doi.org/10.1002/hlca.200490259 CrossRefGoogle Scholar
  145. Ma B-J, Shen J-W, Yu H-Y et al (2010) Hericenones and erinacines: stimulators of nerve growth factor (NGF) biosynthesis in Hericium erinaceus. Mycology 1:92–98. https://doi.org/10.1080/21501201003735556 CrossRefGoogle Scholar
  146. Ma K, Bao L, Han J et al (2014a) New benzoate derivatives and hirsutane type sesquiterpenoids with antimicrobial activity and cytotoxicity from the solid-state fermented rice by the medicinal mushroom Stereum hirsutum. Food Chem 143:239–245. https://doi.org/10.1016/j.foodchem.2013.07.124 PubMedCrossRefGoogle Scholar
  147. Ma K, Han J, Bao L et al (2014b) Two sarcoviolins with antioxidative and α-glucosidase inhibitory activity from the edible mushroom Sarcodon leucopus collected in Tibet. J Nat Prod 77:942–947. https://doi.org/10.1021/np401026b PubMedCrossRefGoogle Scholar
  148. Ma K, Ren J, Han J et al (2014c) Ganoboninketals A-C, antiplasmodial 3,4-seco-27-norlanostane triterpenes from Ganoderma boninense Pat. J Nat Prod 77:1847–1852. https://doi.org/10.1021/np5002863 PubMedCrossRefGoogle Scholar
  149. Malagòn O, Porta A, Clericuzio M et al (2014) Structures and biological significance of lactarane sesquiterpenes from the European mushroom Russula nobilis. Phytochemistry 107:126–134. https://doi.org/10.1016/j.phytochem.2014.08.018 PubMedCrossRefGoogle Scholar
  150. Marcotullio MC (2011) Sarcodon mushrooms: biologically active metabolites. In: Rasooli I (ed) Phytochemicals – bioactivities and impact on health. InTech, RijekaGoogle Scholar
  151. Matsunaga S, Furuya-Suguri H, Nishiwaki S et al (1991) Differential effects of cryptoporic acids D and E, inhibitors of superoxide anion radical release, on tumor promotion of okadaic acid in mouse skin. Carcinogenesis 12:1129–1131. https://doi.org/10.1093/carcin/12.6.1129 PubMedCrossRefGoogle Scholar
  152. McMorris TC, Anchel M (1965) Fungal metabolites. The structures of the novel sesquiterpenoids illudin-S and -M. J Am Chem Soc 87:1594–1600PubMedCrossRefGoogle Scholar
  153. McMorris TC, Staake MD, Kelner MJ (2004) Synthesis and biological activity of enantiomers of antitumor irofulven. J Org Chem 69:619–623. https://doi.org/10.1021/jo035084j PubMedCrossRefGoogle Scholar
  154. Mehta G, Pallavi K (2006) Total synthesis of the putative structure of the novel triquinane based sesquiterpenoid natural product dichomitol. Tetrahedron Lett 47:8355–8360. https://doi.org/10.1016/j.tetlet.2006.09.084 CrossRefGoogle Scholar
  155. Melkonyan FS, Topolyan AP, Karchava AV, Yurovskaya MA (2008) Simple synthesis of methyl 1-(1,1-dimethyl-prop-2-en-1-yl)-1h-indole-3-carboxylate. Chem Heterocycl Compd 44:1288–1290. https://doi.org/10.1007/s10593-009-0183-0 CrossRefGoogle Scholar
  156. Meng J, Li Y-Y, Ou Y-X et al (2011) New sesquiterpenes from Marasmius cladophyllus. Mycology 2:30–36. https://doi.org/10.1080/21501203.2011.554908 CrossRefGoogle Scholar
  157. Mudalungu CM, Richter C, Wittstein K et al (2016) Laxitextines A and B, cyathane xylosides from the tropical fungus Laxitextum incrustatum. J Nat Prod 79:894–898. https://doi.org/10.1021/acs.jnatprod.5b00950 PubMedCrossRefGoogle Scholar
  158. Nakada M (2014) Enantioselective total syntheses of cyathane diterpenoids. Chem Rec (New York, NY) 14:641–662. https://doi.org/10.1002/tcr.201402019 Google Scholar
  159. Narisawa T, Fukaura Y, Kotanagi H, Asakawa Y (1992) Inhibitory effect of cryptoporic acid E, a product from fungus Cryptoporus volvatus, on colon carcinogenesis induced with N-methyl-N-nitrosourea in rats and with 1,2-dimethylhydrazine in mice. Jpn J Cancer Res 83:830–834. https://doi.org/10.1111/j.1349-7006.1992.tb01987.x PubMedCrossRefGoogle Scholar
  160. Nishimura H, Tsuda S, Shimizu H et al (2008) De novo synthesis of (Z)- and (E)-7-hexadecenylitaconic acids by a selective lignin-degrading fungus, Ceriporiopsis subvermispora. Phytochemistry 69:2593–2602. https://doi.org/10.1016/j.phytochem.2008.07.014 PubMedCrossRefGoogle Scholar
  161. Nishimura H, Murayama K, Watanabe T et al (2009) Absolute configuration of ceriporic acids, the iron redox-silencing metabolites produced by a selective lignin-degrading fungus, Ceriporiopsis subvermispora. Chem Phys Lipids 159:77–80. https://doi.org/10.1016/j.chemphyslip.2009.03.006 PubMedCrossRefGoogle Scholar
  162. Nishimura H, Setogawa Y, Watanabe T et al (2011) Epoxy ceriporic acid produced by selective lignin-degrading fungus Ceriporiopsis subvermispora. Chem Phys Lipids 164:707–712. https://doi.org/10.1016/j.chemphyslip.2011.07.005 PubMedCrossRefGoogle Scholar
  163. Nishimura H, Murayama K, Watanabe T et al (2012a) Diverse rare lipid-related metabolites including ω-7 and ω-9 alkenylitaconic acids (ceriporic acids) secreted by a selective white rot fungus, Ceriporiopsis subvermispora. Chem Phys Lipids 165:97–104. https://doi.org/10.1016/j.chemphyslip.2011.10.007 PubMedCrossRefGoogle Scholar
  164. Nishimura H, Sasaki M, Seike H et al (2012b) Alkadienyl and alkenyl itaconic acids (ceriporic acids G and H) from the selective white-rot fungus Ceriporiopsis subvermispora: a new class of metabolites initiating ligninolytic lipid peroxidation. Org Biomol Chem 10:6432–6442. https://doi.org/10.1039/c2ob25415h PubMedCrossRefGoogle Scholar
  165. Nord C, Menkis A, Broberg A (2014a) Cytotoxic illudalane sesquiterpenes from the wood-decay fungus Granulobasidium vellereum (Ellis & Cragin) Jülich. Molecules 19:14195–14203. https://doi.org/10.3390/molecules190914195 PubMedCrossRefGoogle Scholar
  166. Nord CL, Menkis A, Lendel C et al (2014b) Sesquiterpenes from the saprotrophic fungus Granulobasidium vellereum (Ellis & Cragin) Jülich. Phytochemistry 102:197–204. https://doi.org/10.1016/j.phytochem.2014.03.012 PubMedCrossRefGoogle Scholar
  167. Nord C, Menkis A, Broberg A (2015) Cytotoxic illudane sesquiterpenes from the fungus Granulobasidium vellereum (Ellis and Cragin) Jülich. J Nat Prod 78:2559–2564. https://doi.org/10.1021/acs.jnatprod.5b00500 PubMedCrossRefGoogle Scholar
  168. Norikura T, Fujiwara K, Narita T et al (2011) Anticancer activities of thelephantin O and vialinin A isolated from Thelephora aurantiotincta. J Agric Food Chem 59:6974–6979. https://doi.org/10.1021/jf200461j PubMedCrossRefGoogle Scholar
  169. Norikura T, Fujiwara K, Yanai T et al (2013) P-terphenyl derivatives from the mushroom Thelephora aurantiotincta suppress the proliferation of human hepatocellular carcinoma cells via iron chelation. J Agric Food Chem 61:1258–1264. https://doi.org/10.1021/jf3041098 PubMedCrossRefGoogle Scholar
  170. Obara Y, Nakahata N, Kita T et al (1999) Stimulation of neurotrophic factor secretion from 1321N1 human astrocytoma cells by novel diterpenoids, scabronines A and G. Eur J Pharmacol 370:79–84. https://doi.org/10.1016/S0014-2999(99)00077-1 PubMedCrossRefGoogle Scholar
  171. Obara Y, Kobayashi H, Ohta T et al (2001) Scabronine G-methylester enhances secretion of neurotrophic factors mediated by an activation of protein kinase C-ζ. Mol Pharmacol 59:1287–1297PubMedCrossRefGoogle Scholar
  172. Ohashi Y, Kan Y, Watanabe T et al (2007) Redox silencing of the Fenton reaction system by an alkylitaconic acid, ceriporic acid B produced by a selective lignin-degrading fungus, Ceriporiopsis subvermispora. Org Biomol Chem 5:840. https://doi.org/10.1039/b614379b PubMedCrossRefGoogle Scholar
  173. Ohta T, Kita T, Kobayashi N et al (1998) Scabronine A, a novel diterpenoid having potent inductive activity of the nerve growth factor synthesis, isolated from the mushroom, Sarcodon scabrosus. Tetrahedron Lett 39:6229–6232. https://doi.org/10.1016/S0040-4039(98)01282-9 CrossRefGoogle Scholar
  174. Okada K, Ye YQ, Taniguchi K et al (2013) Vialinin A is a ubiquitin-specific peptidase inhibitor. Bioorg Med Chem Lett 23:4328–4331. https://doi.org/10.1016/j.bmcl.2013.05.093 PubMedCrossRefGoogle Scholar
  175. Oliveira AG, Stevani CV (2009) The enzymatic nature of fungal bioluminescence. Photochem Photobiol Sci 8:1416–1421. https://doi.org/10.1039/b908982a PubMedCrossRefGoogle Scholar
  176. Onose J, Xie C, Ye YQ et al (2008) Vialinin A, a novel potent inhibitor of TNF-α production from RBL-2H3 cells. Biol Pharm Bull 31:831–833. https://doi.org/10.1248/bpb.31.831 PubMedCrossRefGoogle Scholar
  177. Onose J, Yoshioka Y, Qi Y et al (2012) Inhibitory effects of vialinin A and its analog on tumor necrosis factor- a release and production from RBL-2H3 cells. Cell Immunol 279:140–144. https://doi.org/10.1016/j.cellimm.2012.10.008 PubMedCrossRefGoogle Scholar
  178. Opatz T, Kolshorn H, Anke H (2008) Sterelactones: new isolactarane type sesquiterpenoids with antifungal activity from Stereum sp. IBWF 01060. J Antibiot (Tokyo) 61:563–567CrossRefGoogle Scholar
  179. Otto A, Porzel A, Schmidt J et al (2015) A study on the biosynthesis of hygrophorone B12 in the mushroom Hygrophorus abieticola reveals an unexpected labelling pattern in the cyclopentenone moiety. Phytochemistry 118:174–180. https://doi.org/10.1016/j.phytochem.2015.08.018 PubMedCrossRefGoogle Scholar
  180. Otto A, Porzel A, Schmidt J et al (2016) Structure and absolute configuration of pseudohygrophorones A12 and B12, alkyl cyclohexenone derivatives from Hygrophorus abieticola (Basidiomycetes). J Nat Prod 79:74–80. https://doi.org/10.1021/acs.jnatprod.5b00675 PubMedCrossRefGoogle Scholar
  181. Otto A, Porzel A, Westermann B et al (2017) Structural and stereochemical elucidation of new hygrophorones from Hygrophorus abieticola (Basidiomycetes). Tetrahedron 73:1682–1690. https://doi.org/10.1016/j.tet.2017.02.013 CrossRefGoogle Scholar
  182. Paci A, Rezai K, Deroussent A et al (2006) Pharmacokinetics, metabolism, and routes of excretion of intravenous irofulven in patients with advanced solid tumors. Drug Metab Dispos 34:1918–1926. https://doi.org/10.1124/dmd.106.010512 PubMedCrossRefGoogle Scholar
  183. Palermo JA, Rodríguez Brasco MF, Spagnuolo C, Seldes AM (2000) Illudalane sesquiterpenoids from the soft coral Alcyonium paessleri: The first natural nitrate esters. J Org Chem 65:4482–4486. https://doi.org/10.1021/jo991740x PubMedCrossRefGoogle Scholar
  184. Pei D, Xu J, Zhuang Q et al (2010) Secondary metabolites from higher fungi: discovery, bioactivity, and bioproduction. Adv Biochem Eng Biotechnol 123:127–141PubMedGoogle Scholar
  185. Peters S, Spiteller P (2007a) Sanguinones A and B, blue pyrroloquinoline alkaloids from the fruiting bodies of the mushroom Mycena sanguinolenta. J Nat Prod 70:1274–1277. https://doi.org/10.1021/np070179s PubMedCrossRefGoogle Scholar
  186. Peters S, Spiteller P (2007b) Mycenarubins A and B, red pyrroloquinoline alkaloids from the mushroom Mycena rosea. Eur J Org Chem 2007(10):1571–1576. https://doi.org/10.1002/ejoc.200600826 CrossRefGoogle Scholar
  187. Peters S, Jaeger RJR, Spiteller P (2008) Red pyrroloquinoline alkaloids from the mushroom Mycena haematopus. Eur J Org Chem 2008(2):319–323. https://doi.org/10.1002/ejoc.200700739 CrossRefGoogle Scholar
  188. Pettit GR, Meng Y, Pettit RK et al (2010a) Antineoplastic agents 582. Part 1: Isolation and structure of a cyclobutane-type sesquiterpene cancer cell growth inhibitor from Coprinus cinereus (Coprinaceae). Bioorg Med Chem 18:4879–4883. https://doi.org/10.1016/j.bmc.2010.06.023 PubMedPubMedCentralCrossRefGoogle Scholar
  189. Pettit GR, Meng Y, Pettit RK et al (2010b) Antineoplastic agents. 556. Isolation and structure of Coprinastatin 1 from Coprinus cinereus. J Nat Prod 73:388–392. https://doi.org/10.1021/np900371j PubMedPubMedCentralCrossRefGoogle Scholar
  190. Pinedo C, Wang C-M, Pradier J-M et al (2008) Sesquiterpene synthase from the botrydial biosynthetic gene cluster of the phytopathogen Botrytis cinerea. ACS Chem Biol 3:791–801. https://doi.org/10.1021/cb800225v PubMedPubMedCentralCrossRefGoogle Scholar
  191. Prateeptongkum S, Driller KM, Jackstell R, Beller M (2010) Iron-catalyzed carbonylation as a key step in the short and efficient syntheses of himanimide A and B. Chem Asian J 5:2173–2176. https://doi.org/10.1002/asia.201000384 PubMedCrossRefGoogle Scholar
  192. Pulte A, Wagner S, Kogler H, Spiteller P (2016) Pelianthinarubins A and B, red pyrroloquinoline alkaloids from the fruiting bodies of the mushroom Mycena pelianthina. J Nat Prod 79:873–878. https://doi.org/10.1021/acs.jnatprod.5b00942 PubMedCrossRefGoogle Scholar
  193. Purtov KV, Petushkov VN, Baranov MS et al (2015) The chemical basis of fungal bioluminescence. Angew Chem Int Ed 54:8124–8128. https://doi.org/10.1002/anie.201501779 CrossRefGoogle Scholar
  194. Qin X, Shao H, Dong Z, Liu J (2008) Six new induced sesquiterpenes from the cultures of ascomycete Daldinia concentrica. J Antibiot (Tokyo) 61:556–562CrossRefGoogle Scholar
  195. Quang DN, Hashimoto T, Hitaka Y et al (2003a) Thelephantins D-H: five p-terphenyl derivatives from the inedible mushroom Thelephora aurantiotincta. Phytochemistry (Elsevier) 63:919–924. https://doi.org/10.1016/S0031-9422(03)00220-6 CrossRefGoogle Scholar
  196. Quang DN, Hashimoto T, Nukada M et al (2003b) Thelephantins A, B and C: three benzoyl p-terphenyl derivatives from the inedible mushroom Thelephora aurantiotincta. Phytochemistry 62:109–113PubMedCrossRefGoogle Scholar
  197. Quang DN, Hashimoto T, Hitaka Y et al (2004) Thelephantins I-N; p-terphenyl derivatives from the inedible mushroom Hydnellum caeruleum. Phytochemistry 65:1179–1184. https://doi.org/10.1016/j.phytochem.2004.02.018 PubMedCrossRefGoogle Scholar
  198. Quin MB, Flynn CM, Wawrzyn GT et al (2013a) Mushroom hunting by using bioinformatics: application of a predictive framework facilitates the selective identification of sesquiterpene synthases in basidiomycota. Chembiochem 14:2480–2491. https://doi.org/10.1002/cbic.201300349 PubMedCrossRefGoogle Scholar
  199. Quin MB, Wawrzyn G, Schmidt-Dannert C (2013b) Purification, crystallization and preliminary X-ray diffraction analysis of Omp6, a protoilludene synthase from Omphalotus olearius. Acta Crystallogr Sect F: Struct Biol Cryst Commun 69:574–577. https://doi.org/10.1107/S1744309113010749 CrossRefGoogle Scholar
  200. Quin MB, Flynn CM, Schmidt-Dannert C (2014) Traversing the fungal terpenome. Nat Prod Rep 31:1449–1473. https://doi.org/10.1039/c4np00075g PubMedPubMedCentralCrossRefGoogle Scholar
  201. Radulović N, Quang DN, Hashimoto T et al (2005) Terrestrins A-G: p-terphenyl derivatives from the inedible mushroom Thelephora terrestris. Phytochemistry 66(9):1052. https://doi.org/10.1016/j.phytochem.2005.03.008 PubMedCrossRefGoogle Scholar
  202. Rahmawati N, Ohashi Y, Watanabe T et al (2005) Ceriporic acid B, an extracellular metabolite of Ceriporiopsis subvermispora, suppresses the depolymerization of cellulose by the fenton reaction. Biomacromolecules 6:2851–2856. https://doi.org/10.1021/bm050358t PubMedCrossRefGoogle Scholar
  203. Richter C, Helaly SE, Thongbai B et al (2016) Pyristriatins A and B: pyridino-cyathane antibiotics from the basidiomycete Cyathus cf. striatus. J Nat Prod 79:1684–1688. https://doi.org/10.1021/acs.jnatprod.6b00194 PubMedCrossRefGoogle Scholar
  204. Rieger PH, Liermann JC, Opatz T et al (2010) Caripyrin, a new inhibitor of infection-related morphogenesis in the rice blast fungus Magnaporthe oryzae. J Antibiot 63:285–289. https://doi.org/10.1038/ja.2010.31 PubMedCrossRefGoogle Scholar
  205. Ríos J-L, Andújar I, Recio M-C, Giner R-M (2012) Lanostanoids from fungi: a group of potential anticancer compounds. J Nat Prod 75(11):2016–2044. https://doi.org/10.1021/np300412h PubMedCrossRefGoogle Scholar
  206. Robbins WJ, Kavanagh F, Hervey A (1947) Antibiotic substances from basidiomycetes: I. Pleurotus griseus. Proc Natl Acad Sci USA 33:171–176. https://doi.org/10.1073/pnas.33.6.171 PubMedPubMedCentralCrossRefGoogle Scholar
  207. Sadorn K, Saepua S, Boonyuen N et al (2016) Antimicrobial activity and cytotoxicity of polyketides isolated from the mushroom Xerula sp. BCC56836. RSC Adv 6:94510–94523. https://doi.org/10.1039/C6RA21898A CrossRefGoogle Scholar
  208. Schmidt-Dannert C (2014) Biosynthesis of terpenoid natural products in fungi. In: Biotechnology of isoprenoids. Springer, pp 19–61Google Scholar
  209. Schneider P, Bouhired S, Hoffmeister D (2008) Characterization of the atromentin biosynthesis genes and enzymes in the homobasidiomycete Tapinella panuoides. Fungal Genet Biol 45:1487–1496. https://doi.org/10.1016/j.fgb.2008.08.009 PubMedCrossRefGoogle Scholar
  210. Schüffler A, Anke T (2014) Fungal natural products in research and development. Nat Prod Rep 31(10):1425–1448. https://doi.org/10.1039/C4NP00060A CrossRefGoogle Scholar
  211. Schüffler A, Wollinsky B, Anke T et al (2012) Isolactarane and sterpurane sesquiterpenoids from the basidiomycete Phlebia uda. J Nat Prod 75:1405–1408. https://doi.org/10.1021/np3000552 PubMedCrossRefGoogle Scholar
  212. Schultes R, Hofmann A (1980) Pflanzen der Götter. Hallwag, BernGoogle Scholar
  213. Schwenk D, Nett M, Dahse H et al (2014) Injury-induced biosynthesis of methyl-branched polyene pigments in a white-rotting basidiomycete. J Nat Prod 77(12):2658–2663PubMedCrossRefGoogle Scholar
  214. Schwenk D, Brandt P, Blanchette RA et al (2016) Unexpected metabolic versatility in a combined fungal fomannoxin/vibralactone biosynthesis. J Nat Prod 79:1407–1414. https://doi.org/10.1021/acs.jnatprod.6b00147 PubMedCrossRefGoogle Scholar
  215. Selles P (2005) Synthesis and biological evaluation of himanimide C and unnatural analogues. Org Lett 7:605–608. https://doi.org/10.1021/ol047664o PubMedCrossRefGoogle Scholar
  216. Shi X-W, Li X-J, Gao J-M, Zhang X-C (2011a) Fasciculols H and I, two lanostane derivatives from Chinese mushroom Naematoloma fasciculare. Chem Biodivers 8:1864–1870. https://doi.org/10.1002/cbdv.201000203 PubMedCrossRefGoogle Scholar
  217. Shi XW, Liu L, Gao JM, Zhang AL (2011b) Cyathane diterpenes from Chinese mushroom Sarcodon scabrosus and their neurite outgrowth-promoting activity. Eur J Med Chem 46:3112–3117. https://doi.org/10.1016/j.ejmech.2011.04.006 PubMedCrossRefGoogle Scholar
  218. Shi X-W, Zhang A-L, Pescitelli G, Gao J-M (2012) Secoscabronine M, a novel diterpenoid from the Chinese bitter mushroom Sarcodon scabrosus. Chirality 24:386–390. https://doi.org/10.1002/chir.22031 PubMedCrossRefGoogle Scholar
  219. Shibata H, Irie A, Morita Y (1998) New antibacterial diterpenoids from the Sarcodon scabrosus fungus. Biosci Biotechnol Biochem 62:2450–2452. https://doi.org/10.1271/bbb.62.2450 PubMedCrossRefGoogle Scholar
  220. Stadler M, Hoffmeister D (2015) Fungal natural products-the mushroom perspective. Front Microbiol 6:1–4. https://doi.org/10.3389/fmicb.2015.00127 CrossRefGoogle Scholar
  221. Stadler M, Sterner O (1998) Production of bioactive secondary metabolites in the fruit bodies of macrofungi as a response to injury. Phytochemistry 49:1013–1019. https://doi.org/10.1016/S0031-9422(97)00800-5 CrossRefGoogle Scholar
  222. Stipkovits L, Ripley PH, Tenk M, Glávits R, Molnár T, Fodor L (2005) The efficacy of valnemulin (Econor) in the control of disease caused by experimental infection of calves with Mycoplasma bovis. Res Vet Sci 78(3):207–215PubMedCrossRefGoogle Scholar
  223. Sulake RS, Chen C (2015) Total synthesis of (+)-antroquinonol and (+)-antroquinonol D. Org Lett 17:1138–1141. https://doi.org/10.1021/acs.orglett.5b00046 PubMedCrossRefGoogle Scholar
  224. Sulake RS, Lin H-H, Hsu C-Y et al (2015) Synthesis of (+)-antroquinonol: an antihyperglycemic agent. J Org Chem 80:6044–6051. https://doi.org/10.1021/acs.joc.5b00345 PubMedCrossRefGoogle Scholar
  225. Sun R, Zheng X, Wang X et al (2011) Two new benzofuran derivatives from the fungus Stereum sp. YMF1.1684. Phytochem Lett 4:320–322. https://doi.org/10.1016/j.phytol.2011.06.003 CrossRefGoogle Scholar
  226. Suresh M, Kumar N, Veeraraghavaiah G et al (2016) Total synthesis of coprinol. J Nat Prod 79(10):2740–2743. https://doi.org/10.1021/acs.jnatprod.6b00277 PubMedCrossRefGoogle Scholar
  227. Suzuki S, Murayama T, Shiono Y (2005) Illudalane sesquiterpenoids, echinolactones A and B, from a mycelial culture of Echinodontium japonicum. Phytochemistry 66:2329–2333. https://doi.org/10.1016/j.phytochem.2005.06.018 PubMedCrossRefGoogle Scholar
  228. Tanaka N, Kitamura A, Mizushina Y et al (1998) Fomitellic acids, triterpenoid inhibitors of eukaryotic DNA polymerases from a basidiomycete, Fomitella fraxinea. J Nat Prod 61:193–197. https://doi.org/10.1021/np970127a PubMedCrossRefGoogle Scholar
  229. Tang H-Y, Yin X, Zhang C-C et al (2015) Structure diversity, synthesis, and biological activity of cyathane diterpenoids in higher fungi. Curr Med Chem 22:2375–2391. https://doi.org/10.2174/0929867322666150521091333 PubMedCrossRefGoogle Scholar
  230. Tao Q, Ma K, Yang Y et al (2016a) Bioactive sesquiterpenes from the edible mushroom Flammulina velutipes and their biosynthetic pathway confirmed by genome analysis and chemical evidence. J Org Chem 81:9867–9877. https://doi.org/10.1021/acs.joc.6b01971 PubMedCrossRefGoogle Scholar
  231. Tao QQ, Ma K, Bao L et al (2016b) New sesquiterpenoids from the edible mushroom Pleurotus cystidiosus and their inhibitory activity against α-glucosidase and PTP1B. Fitoterapia 111:29–35. https://doi.org/10.1016/j.fitote.2016.04.007 PubMedCrossRefGoogle Scholar
  232. Tao QQ, Ma K, Bao L et al (2016c) Sesquiterpenoids with PTP1B inhibitory activity and cytotoxicity from the edible mushroom Pleurotus citrinopileatus. Planta Med 82:639–644. https://doi.org/10.1055/s-0041-111629 PubMedCrossRefGoogle Scholar
  233. Tateishi K, Hoshi H, Matsunaga K (2005) Inventors; Kureha Corporation, assignee. Antiallergic agent. WO2005095412 A1Google Scholar
  234. Tian MQ, Liu R, Li JF et al (2016) Three new sesquiterpenes from the fungus Stereum sp. YMF1.1686. Phytochem Lett 15:186–189. https://doi.org/10.1016/j.phytol.2016.01.006 CrossRefGoogle Scholar
  235. Tian M-Q, Wu Q-L, Wang X et al (2017) A new compound from Stereum insigne CGMCC5.57. Nat Prod Res 31:932–937. https://doi.org/10.1080/14786419.2016.1255889 PubMedCrossRefGoogle Scholar
  236. Tzeng YM, Geethangili M (2011) Review of pharmacological effects of Antrodia camphorata and its bioactive compounds. Evid Based Complement Alternat Med. https://doi.org/10.1093/ecam/nep108
  237. Villaume MT, Sella E, Saul G et al (2015) Antroquinonol A: scalable synthesis and preclinical biology of a phase 2 drug candidate. ACS Cent Sci 2(1):27–31. https://doi.org/10.1021/acscentsci.5b00345 PubMedPubMedCentralCrossRefGoogle Scholar
  238. Wackler B, Lackner G, Chooi YH, Hoffmeister D (2012) Characterization of the Suillus grevillei quinone synthetase GreA supports a nonribosomal code for aromatic α-keto acids. ChemBioChem 13(1798–1804):S1798/1–S1798/5. https://doi.org/10.1002/cbic.201200187 Google Scholar
  239. Wang G-Q, Wei K, Feng T et al (2012a) Vibralactones G-J from cultures of the basidiomycete Boreostereum vibrans. J Asian Nat Prod Res 14:115–120. https://doi.org/10.1080/10286020.2011.636037 PubMedCrossRefGoogle Scholar
  240. Wang Y, Bao L, Yang X et al (2012b) Bioactive sesquiterpenoids from the solid culture of the edible mushroom Flammulina velutipes growing on cooked rice. Food Chem 132:1346–1353. https://doi.org/10.1016/j.foodchem.2011.11.117 PubMedCrossRefGoogle Scholar
  241. Wang G-Q, Wei K, Li Z-H et al (2013a) Three new vibralactone-related compounds from cultures of Basidiomycete Boreostereum vibrans. J Asian Nat Prod Res 15:950–955. https://doi.org/10.1080/10286020.2013.824429 PubMedCrossRefGoogle Scholar
  242. Wang S, Bao L, Han J et al (2013b) Pleurospiroketals A-E, perhydrobenzannulated 5,5-spiroketal sesquiterpenes from the edible mushroom Pleurotus cornucopiae. J Nat Prod 76:45–50. https://doi.org/10.1021/np3006524 PubMedCrossRefGoogle Scholar
  243. Wang B, Han J, Xu W et al (2014a) Production of bioactive cyathane diterpenes by a birds nest fungus Cyathus gansuensis growing on cooked rice. Food Chem 152:169–176. https://doi.org/10.1016/j.foodchem.2013.11.137 PubMedCrossRefGoogle Scholar
  244. Wang BT, Qi QY, Ma K et al (2014b) Depside α-glucosidase inhibitors from a culture of the mushroom Stereum hirsutum. Planta Med 80:918–924. https://doi.org/10.1055/s-0034-1382828 PubMedCrossRefGoogle Scholar
  245. Wang S-C, Lee T-H, Hsu C-H et al (2014c) Antroquinonol D, isolated from Antrodia camphorata, with DNA demethylation and anticancer potential. J Agric Food Chem 62:5625–5635. https://doi.org/10.1021/jf4056924 PubMedCrossRefGoogle Scholar
  246. Wang SM, Han JJ, Ma K et al (2014d) New alpha-glucosidase inhibitors with p-terphenyl skeleton from the mushroom Hydnellum concrescens. Fitoterapia 98:149–155. https://doi.org/10.1016/j.fitote.2014.07.019 PubMedCrossRefGoogle Scholar
  247. Wang F, Ma H, Hu Z et al (2016a) Secondary metabolites from Colletotrichum capsici, an endophytic fungus derived from Siegesbeckia pubescens Makino. Nat Prod Res 31(16):1849–1854. https://doi.org/10.1080/14786419.2016.1261346 PubMedCrossRefGoogle Scholar
  248. Wang J-C, Li G-Z, Lv N et al (2016b) Cryptoporic acid S, a new drimane-type sesquiterpene ether of isocitric acid from the fruiting bodies of Cryptoporus volvatus. J Asian Nat Prod Res 6020:1–6. https://doi.org/10.1080/10286020.2016.1240170 Google Scholar
  249. Wangun HVK, Hertweck C (2007) Squarrosidine and Pinillidine: 3,3′-fused bis(styrylpyrones) from Pholiota squarrosa and Phellinus pini. Eur J Org Chem 2007(20):3292–3295. https://doi.org/10.1002/ejoc.200700090 CrossRefGoogle Scholar
  250. Wawrzyn GT, Bloch SE, Schmidt-Dannert C (2012a) Discovery and characterization of terpenoid biosynthetic pathways of fungi, 1st edn. Elsevier, AmsterdamGoogle Scholar
  251. Wawrzyn GT, Quin MB, Choudhary S et al (2012b) Draft genome of Omphalotus olearius provides a predictive framework for sesquiterpenoid natural product biosynthesis in basidiomycota. Chem Biol 19:772–783. https://doi.org/10.1016/j.chembiol.2012.05.012 PubMedPubMedCentralCrossRefGoogle Scholar
  252. Wilkins WH, Harris GCM (1943) Investigation into the production of bacteriostatic substances by fungi. Ann Appl Biol 30:226–229. https://doi.org/10.1111/j.1744-7348.1943.tb06193.x CrossRefGoogle Scholar
  253. Williams R (2013) Discontinued drugs in 2012: oncology drugs. Expert Opin Investig Drugs 22:1627–1644. https://doi.org/10.1517/13543784.2013.847088 PubMedCrossRefGoogle Scholar
  254. Wittstein K, Rascher M, Rupcic Z et al (2016) Corallocins A-C, nerve growth and brain-derived neurotrophic factor inducing metabolites from the mushroom Hericium coralloides. J Nat Prod 79:2264–2269. https://doi.org/10.1021/acs.jnatprod.6b00371 PubMedCrossRefGoogle Scholar
  255. Wu W, Zhao F, Bao L et al (2011a) Two new cryptoporic acid derivatives from the fruiting bodies of Cryptoporus sinensis. Helv Chim Acta 94:2020–2026. https://doi.org/10.1002/hlca.201100100 CrossRefGoogle Scholar
  256. Wu W, Zhao F, Ding R et al (2011b) Four new cryptoporic acid derivatives from the fruiting bodies of Cryptoporus sinensis, and their inhibitory effects on nitric oxide production. Chem Biodivers 8:1529–1538. https://doi.org/10.1002/cbdv.201000184 CrossRefGoogle Scholar
  257. Xia Q, Zhang H, Sun X et al (2014) A comprehensive review of the structure elucidation and biological activity of Triterpenoids from Ganoderma spp. Molecules 19:17478–17535. https://doi.org/10.3390/molecules191117478 PubMedCrossRefGoogle Scholar
  258. Xiao H, Zhong JJ (2016) Production of useful terpenoids by higher-fungus cell factory and synthetic biology approaches. Trends Biotechnol 34:242–255. https://doi.org/10.1016/j.tibtech.2015.12.007 PubMedCrossRefGoogle Scholar
  259. Xie C, Koshino H, Esumi Y et al (2005) Vialinin A, a novel 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenger from an edible mushroom in China. Biosci Biotechnol Biochem 69:2326–2332. https://doi.org/10.1271/bbb.69.2326 PubMedCrossRefGoogle Scholar
  260. Xie C, Koshino H, Esumi Y et al (2008) Vialinins A and B: novel bioactive compounds from Thelephora vialis, an edible mushroom in China. ACS Symp Ser 993:465–472. https://doi.org/10.1021/bk-2008-0993.ch041 CrossRefGoogle Scholar
  261. Xie HH, Xu XY, Dan Y, Wei XY (2011) Novel sesquiterpenes from the mycelial cultures of Dichomitus squalens. Helv Chim Acta 94:868–874. https://doi.org/10.1002/hlca.201000328 CrossRefGoogle Scholar
  262. Xu Z, Yan S, Bi K et al (2013) Isolation and identification of a new anti-inflammatory cyathane diterpenoid from the medicinal fungus Cyathus hookeri Berk. Fitoterapia 86:159–162. https://doi.org/10.1016/j.fitote.2013.03.002 PubMedCrossRefGoogle Scholar
  263. Yabuta T, Kobe K, Hayashi T (1934) Biochemical studies of the “bakanae” fungus of rice. I. Fusarinic acid, a new product of the “Bakanae” fungus. Z Pflanzenkrankh (Pflanzenpathol) Pflanzenschutz 10:1059–1068Google Scholar
  264. Yamaoka M, Fukatsu Y, Nakazaki A, Kobayashi S (2009a) Synthetic study of fomitellic acids: construction of the AB ring moiety. Tetrahedron Lett 50:3849–3852. https://doi.org/10.1016/j.tetlet.2009.04.039 CrossRefGoogle Scholar
  265. Yamaoka M, Nakazaki A, Kobayashi S (2009b) Total synthesis of fomitellic acid B. Tetrahedron Lett 50:6764–6768. https://doi.org/10.1016/j.tetlet.2009.09.088 CrossRefGoogle Scholar
  266. Yang SS, Wang GJ, Wang SY et al (2009) New constituents with iNOS inhibitory activity from mycelium of Antrodia camphorata. Planta Med 75:512–516. https://doi.org/10.1055/s-0029-1185305 PubMedCrossRefGoogle Scholar
  267. Yang SX, Yu ZC, Lu QQ et al (2012) Toxic lanostane triterpenes from the basidiomycete Ganoderma amboinense. Phytochem Lett 5:576–580. https://doi.org/10.1016/j.phytol.2012.05.017 CrossRefGoogle Scholar
  268. Yang N, Ma Q, Huang S, Dai H (2014a) Two androstane derivatives from the cultures of fungus Marasmiellus ramealis (Bull.) Singer. Bull Kor Chem Soc 35:3224–3226CrossRefGoogle Scholar
  269. Yang X-Y, Li Z-H, Dong Z-J et al (2014b) Three new sesquiterpenoids from cultures of the basidiomycete Conocybe siliginea. J Asian Nat Prod Res 17:1–6. https://doi.org/10.1080/10286020.2014.939072 PubMedCrossRefGoogle Scholar
  270. Yang N, Huang S, Dai H et al (2015) Chemical constituents from cultures of the fungus Marasmiellus ramealis (Bull.) Singer. J Braz Chem Soc 26:9–13. https://doi.org/10.5935/0103-5053.20140206 Google Scholar
  271. Yang L, Wang C, Zhou J, Kim S-W (2016) Combinatorial engineering of hybrid mevalonate pathways in Escherichia coli for protoilludene production. Microb Cell Factories 15:14. https://doi.org/10.1186/s12934-016-0409-7 CrossRefGoogle Scholar
  272. Yaoita Y, Hiraob M, Kikuchi M, Machida K (2012) Three new lactarane sesquiterpenoids from the mushroom Russula sanguinea. Nat Prod Commun 7:1133–1135PubMedGoogle Scholar
  273. Ye YQ, Koshino H, Onose J et al (2009) Structural revision of thelephantin G by total synthesis and the inhibitory activity against TNF-r production. J Org Chem 74(12):4642–4645. https://doi.org/10.1021/jo900638b PubMedCrossRefGoogle Scholar
  274. Ying YM, Shan WG, Zhang LW, Zhan ZJ (2013) Ceriponols A-K, tremulane sesquitepenes from Ceriporia lacerate HS-ZJUT-C13A, a fungal endophyte of Huperzia serrata. Phytochemistry 95:360–367. https://doi.org/10.1016/j.phytochem.2013.07.025 PubMedCrossRefGoogle Scholar
  275. Yoshikawa K, Kaneko A, Matsumoto Y et al (2006) Russujaponols A-F illudoid sesquiterpenes from the fruiting body of Russula japonica. J Nat Prod 69:1267–1270. https://doi.org/10.1021/np068006a PubMedCrossRefGoogle Scholar
  276. Yoshikawa K, Matsumoto Y, Hama H et al (2009) Russujaponols G-L, illudoid sesquiterpenes, and their neurite outgrowth promoting activity from the fruit body of Russula japonica. Chem Pharm Bull 57:311–314PubMedCrossRefGoogle Scholar
  277. Yoshikawa K, Koso K, Shimomura M et al (2013) Yellow pigments, fomitellanols A and B, and drimane sesquiterpenoids, cryptoporic acids P and Q, from Fomitella fraxinea and their inhibitory activity against COX and 5-LO. Molecules 18:4181–4191. https://doi.org/10.3390/molecules18044181 PubMedCrossRefGoogle Scholar
  278. Yoshioka Y, Namiki D, Makiuchi M et al (2016) Vialinin A and thelephantin G, potent inhibitors of tumor necrosis factor-α production, inhibit sentrin/SUMO-specific protease 1 enzymatic activity. Bioorg Med Chem Lett 26:4237–4240. https://doi.org/10.1016/j.bmcl.2016.07.051 PubMedCrossRefGoogle Scholar
  279. Yun BS, Lee IK, Kim JP, Yoo ID (2000) Curtisians A-D, new free radical scavengers from the mushroom Paxillus curtisii. J Antibiot 53:114–122PubMedCrossRefGoogle Scholar
  280. Zähner H, Anke H, Anke T (1983) Evolution of secondary pathways. In: Bennett J, Ciegler A (eds) Secondary metabolites and differentiation in fungi. Dekker, New York, pp 153–171Google Scholar
  281. Zeiler E, Braun N, Böttcher T et al (2011) Vibralactone as a tool to study the activity and structure of the ClpP1P2 complex from Listeria monocytogenes. Angew Chem Int Ed 50:11001–11004. https://doi.org/10.1002/anie.201104391 CrossRefGoogle Scholar
  282. Zhao PJ, Yang YL, Du L et al (2013) Elucidating the biosynthetic pathway for vibralactone: a pancreatic lipase inhibitor with a fused bicyclic β-lactone. Angew Chem Int Ed 52:2298–2302. https://doi.org/10.1002/anie.201208182 CrossRefGoogle Scholar
  283. Zheng Y, Shen Y (2009) Clavicorolides A and B, sesquiterpenoids from the fermentation products of edible fungus Clavicorona pyxidata. Org Lett 11:109–112. https://doi.org/10.1021/ol8024549 PubMedCrossRefGoogle Scholar
  284. Zheng X, Li G-H, Xie M-J et al (2013) Stereumins K–P, sesquiterpenes from the fungus Stereum sp. CCTCC AF 2012007. Phytochemistry 86:144–150. https://doi.org/10.1016/j.phytochem.2012.10.014 PubMedCrossRefGoogle Scholar
  285. Zheng Y, Wang J, Pang H (2014) Inventor. Sesquiterpene compounds with antitumor activity and preparation method of sesquiterpene compounds. Chinese patent CN104059040 A. 2014 Sep 24Google Scholar
  286. Zheng Y, Pang H, Wang J et al (2015) New apoptosis-inducing sesquiterpenoids from the mycelial culture of Chinese edible fungus Pleurotus cystidiosus. J Agric Food Chem 63:545–551. https://doi.org/10.1021/jf504931n PubMedCrossRefGoogle Scholar
  287. Zhong J-J, Xiao J-H (2009) Secondary metabolites from higher fungi: discovery, bioactivity, and bioproduction. In: Biotechnology in China I. pp 79–150Google Scholar
  288. Zhou Z-Y, Liu J-K (2010) Pigments of fungi (macromycetes). Nat Prod Rep 27:1531–1570. https://doi.org/10.1039/c004593d PubMedCrossRefGoogle Scholar
  289. Zhou Q, Snider BB (2008a) Synthesis of (±)-vibralactone. Org Lett 10:1401–1404. https://doi.org/10.1021/ol800118c PubMedPubMedCentralCrossRefGoogle Scholar
  290. Zhou Q, Snider BB (2008b) Synthesis of (±)- and (−)-vibralactone and vibralactone C. J Org Chem 73:8049–8056. https://doi.org/10.1021/jo8015743 PubMedPubMedCentralCrossRefGoogle Scholar
  291. Zhou Z-Y, Tang J-G, Wang F et al (2008) Sesquiterpenes and aliphatic diketones from cultures of the basidiomycete Conocybe siliginea. J Nat Prod 71:1423–1426. https://doi.org/10.1021/np8002657 PubMedCrossRefGoogle Scholar
  292. Zhou L-Y, Yu X-H, Lu B, Hua Y (2016) Bioassay-guided isolation of cytotoxic isocryptoporic acids from Cryptoporus volvatus. Molecules 21:1692. https://doi.org/10.3390/molecules21121692 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institut für Biotechnologie und Wirkstoff-Forschung gGmbHKaiserslauternGermany

Personalised recommendations