Cyclic Peptides and Depsipeptides from Fungi

  • Heidrun AnkeEmail author
  • Hartmut Laatsch
Part of the The Mycota book series (MYCOTA, volume 15)


In this chapter, the occurrence of these compounds within the kingdom Eumycota (true fungi), the diversity of their chemical building blocks and structures, their ecological roles, as well as their different biological activities will be described. Finally the importance of cyclic peptides and depsipeptides as drugs and lead compounds for agricultural and pharmaceutical applications will be discussed.



The work in the IBWF was supported by the state of Rhineland-Palatinate, the BASF SE, the Bayer AG, the BMBF, the DAAD, and the DFG.


  1. Abbanat D, Leighton M, Maiese W, Jones EBG, Pearce C, Greenstein M (1998) Cell wall active compounds produced by the marine fungus Hypoxylon oceanicum LL-15G56. J Antibiot 51:296–302PubMedCrossRefGoogle Scholar
  2. Adachi K, Kanoh K, Wisespong P, Nishijima M, Shizuri Y (2005) Clonostachysins A and B, new antidinoflagellate cyclic peptides from a marine-derived fungus. J Antibiot 58:145–150PubMedCrossRefGoogle Scholar
  3. Ahn JH, Walton JD (1998) Regulation of cyclic peptide biosynthesis and pathogenicity in Cochliobolus carbonum by TOXEP, a novel protein with a bZIP basic DNA-binding motif and four ankyrin repeats. Mol Gen Genet 260:462–469PubMedGoogle Scholar
  4. Akone SH, Daletos G, Lin W, Proksch P (2016) Unguisin F, a new cyclic peptide from the endophytic fungus Mucor irregularis. Z Naturforsch 71:15–19Google Scholar
  5. Almeida C, El Maddah F, Kehraus S, Schnakenburg S, Koenig GM (2016) Endolides A and B, vasopressin and serotonin receptor interacting N-methylated peptides from the sponge-derived fungus Stachylidium sp. Org Lett 18:528–531PubMedCrossRefGoogle Scholar
  6. Amitani R, Taylor G, Elezis EN, Liewellyn-Jones C, Mitchell J, Kuze F, Cole PJ, Wilson R (1995) Purification and characterization of factors produced by Aspergillus fumigatus which affect human ciliated respiratory epithelium. Infect Immun 63:3266–3271PubMedPubMedCentralGoogle Scholar
  7. Anke T, Erkel O (2002) Non β-lactam antibiotics. In: Osiewacz HD (ed) Industrial applications (Mycota, X). Springer, Heidelberg, pp 93–108CrossRefGoogle Scholar
  8. Anke H, Sterner O (2002) Insecticidal and nematicidal metabolites from fungi. In: Osiewacz HD (ed) Industrial applications (Mycota, X). Springer, Heidelberg, pp 109–127CrossRefGoogle Scholar
  9. Anke H, Kinn J, Bergquist KE, Sterner O (1991) Production of siderophores by strains of the genus Trichoderma: isolation and characterization of the new lipophilic coprogen derivative, palmitoylcoprogen. Biol Met 4:176–180CrossRefGoogle Scholar
  10. Antelo L, Hof C, Eisfeld K, Sterner O, Anke H (2006) Siderophores produced by Magnaporthe grisea in the presence and absence of iron. Z Naturforsch 61c:461–464Google Scholar
  11. Aoyagi A, Yano T, Kozuma S, Takatsu T (2007) Pleofungins, novel inositol phosphorylceramide synthase inhibitors, from Phoma sp. SANK 13899. J Antibiot 60:143–152PubMedCrossRefGoogle Scholar
  12. Arai N, Shiomi K, Iwai Y, Omura S (2000) Argifin, a new chitinase inhibitor, produced by Gliocladium sp. FTD-0668. II. Isolation, physico-chemical properties, and structure elucidation. J Antibiot 53:609–614PubMedCrossRefGoogle Scholar
  13. Arnison PG, Bibb MJ, Bierbaum G Bowers AA, Bugni TS, Bulaj G, Camarero JA, Campopiano DJ, Challis GL, Clardy J, C otter PD, Craik DJ, Dawson M, Dittmann E, Donadio S, Dorrestein PC, Entian K-D, Fischbach MA, Garavelli JS, Göransson U, Gruber CW, Haft DH, Hemscheidt TK, Hertweck C, Hill C, Horswill AR, Jaspars M, Kelly WL, Klinman JP, Kuipers OP, Link AJ, Liu W, Marahiel MA, Mitchell DA, Moll GN, Moore BS, Müller R, Nair SK, Nes IF, Norris GE, Olivera BM, Onaka H, Patchett ML, Piel J, Reaney MJT, Rebuffat S, Ross RP, Sahl H-G, Schmidt EW, Selsted ME, Severinov K, Shen B, Sivonen K, Smith L, Stein T, Süssmuth RD, Tagg JR, Tang G-L, Truman AW, Vederas JC, Walsh CT, Walton JD, Wenzel SC, Willey JM, van der Donk WA (2013) Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for an universal nomenclature. Nat Prod Rep 30:108–160PubMedPubMedCentralCrossRefGoogle Scholar
  14. Badan SD, Ridley DD, Singh P (1978) Isolation of cyclodepsipeptides from plant pathogenic fungi. Aust J Chem 31:1397–1399CrossRefGoogle Scholar
  15. Bao J, Zhang X-Y, Xu X-Y, He F, Nong X-H, Qi S-H (2013) New cyclic tetrapeptides and asteltoxins from gorgonian-derived fungus Aspergillus sp. SCSGAF 0076. Tetrahedron 69:2113–2117CrossRefGoogle Scholar
  16. Bara R, Aly AH, Wray V, Lin WH, Proksch P, Debbab A (2013) Talaromins A and B, new cyclic peptides from the endophytic fungus Talaromyces wortmannii. Tetrahedron Lett 54:1686–1689CrossRefGoogle Scholar
  17. Beekman AM, Barrow RA (2014) Fungal metabolites as pharmaceuticals. Aust J Chem 67:827–843CrossRefGoogle Scholar
  18. Belofsky GN, Gloer JB, Wicklow DT, Dowd PF (1998) Shearamide A: a new cyclic peptide from the ascostromata of Eupenicillium shearii. Tetrahedron Lett 39:5497–5500CrossRefGoogle Scholar
  19. Belofsky GN, Jensen PR, Fenical W (1999) Sansalvamide: a new cytotoxic cyclic depsipeptide produced by a marine fungus of the genus Fusarium. Tetrahedron Lett 40:2913–2916CrossRefGoogle Scholar
  20. Bertram A, Pattenden G (2007) Marine metabolites: metal binding and metal complexes of azole-based cyclic peptides of marine origin. Nat Prod Rep 24:18–30PubMedCrossRefGoogle Scholar
  21. Betina V (1989) Epipolythiopiperazine-3,6-diones. In: Mycotoxins, chemical, biological and environmental aspects. Elsevier, Amsterdam, pp 388–405Google Scholar
  22. Bills GF, Platas G, Peláez F, Masurekar P (1999) Reclassification of a pneumocandin-producing anamorph, Glarea lozoyensis gen. et sp. nov., previously identified as Zalerion arboricola. Mycol Res 103:179–192CrossRefGoogle Scholar
  23. Bills GF, Gloer JB, An Z (2013) Coprophilous fungi: antibiotic discovery and functions in an underexplored arena of microbial defensive mutualism. Curr Opin Microbiol 16:549–565PubMedCrossRefGoogle Scholar
  24. Bills GF, Li Y, Chen L, Yue Q, Niu XM, An Z (2014) New insights into the echinocandins and other fungal non-ribosomal peptides and peptaibiotics. Nat Prod Rep 31:1348–1375PubMedCrossRefGoogle Scholar
  25. Birch AJ, Massy-Westropp RA, Rickards RW (1956) Studies in relation to biosynthesis. Part VIII. The structure of mycelianamide. J Chem Soc:3717–3721Google Scholar
  26. Blatzer M, Schrettl M, Sarg B, Lindner H, Pfaller K, Haas H (2011) SidL, an Aspergillus fumigatus transacetylase involved in biosynthesis of the siderophores ferricrocin and hydroxyferricrocin. Appl Environ Microbiol 77:4959–4966PubMedPubMedCentralCrossRefGoogle Scholar
  27. Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2006) Marine natural products. Nat Prod Rep 23:26–78PubMedCrossRefGoogle Scholar
  28. Boros C, Smith CJ, Vasina Y, Che Y, Dix AB, Darveaux B, Pearce C (2006) Isolation and identification of the icosalides—cyclic peptolides with selective antibiotic and cytotoxic activities. J Antibiot 59:486–494PubMedCrossRefGoogle Scholar
  29. Boudart G (1989) Antibacterial activity of sirodesmin PL phytotoxin: application to the selection of phytoxin-deficient mutants. Appl Environ Microbiol 55:1555–1559PubMedPubMedCentralGoogle Scholar
  30. Büchel E, Martini U, Mayer A, Anke H, Sterner O (1998a) Omphalotins B, C, and D, nematicidal cyclopeptides from Omphalotus olearius. Absolute configuration of omphalotin A. Tetrahedron 54:5345–5352CrossRefGoogle Scholar
  31. Büchel E, Mayer A, Martini U, Anke H, Sterner O (1998b) Structure elucidation of omphalotin, a cyclic dodecapeptide with potent nematicidal activity from Omphalotus olearius. Pest Sci 54:309–311CrossRefGoogle Scholar
  32. Buckingham J (ed) (2008) Dictionary of natural products on DVD, Version 17.1. Chapman and Hall, CRC, Boca RatonGoogle Scholar
  33. Bunyapaiboonsri T, Vongvilai P, Auncharoen P, Isaka M (2012) Cyclohexadepsipeptides from the filamentous fungus Acremonium sp. BCC 2629. Helv Chim Acta 95:963–972CrossRefGoogle Scholar
  34. Butler MS (2004) The role of natural product chemistry in drug discovery. J Nat Prod 67:2141–2154PubMedCrossRefGoogle Scholar
  35. Capon RJ, Skene C, Stewart M, Ford J, O’Hair RAJ, Williams L, Lacey E, Gill JH, Heiland K, Friedel T (2003) Aspergillicins A-E: five novel depsipeptides from the marine-derived fungus Aspergillus carneus. Org Biomol Chem 1:1856–1862PubMedCrossRefGoogle Scholar
  36. Che Y, Swenson DC, Gloer JB, Koster B, Malloch D (2001) Pseudodestruxins A and B: new cyclic depsipeptides from the coprophilous fungus Nigrosabulum globosum. J Nat Prod 64:555–558PubMedCrossRefGoogle Scholar
  37. Chen CH, Lang G, Mitova MI, Murphy AC, Cole ALJ, Din LB, Blunt JW, Munro MHG (2006) Pteratides I-IV, new cytotoxic cyclodepsipeptides from the Malaysian basidiomycete Pterula sp. J Org Chem 71:7947–7951PubMedCrossRefGoogle Scholar
  38. Chen Z, Song Y, Chen Y, Huang H, Zhang W, Ju J (2012) Cyclic heptapeptides, cordyhepta-peptides C−E, from the marine-derived fungus Acremonium persicinum SCSIO 115 and their cytotoxic activities. J Nat Prod 75:1215–1219PubMedCrossRefGoogle Scholar
  39. Chen M, Shao C-L, X-M F, Kong C-J, She Z-G, Wang C-Y (2014) Lumazine peptides, penilumamides B−D and the cyclic pentapeptide asperpeptide A from a gorgonian-derived Aspergillus sp. fungus. J Nat Prod 77:1601–1606PubMedCrossRefGoogle Scholar
  40. Closse A, Huguenin R (1974) Isolierung und Strukturaufklärung von Chlamydocin. Helv Chim Acta 57:533–545PubMedCrossRefGoogle Scholar
  41. Cole RJ, Schweikert MA (2003) Diketopiperazines. In: Cole RJ, Schweikert MA (eds) Handbook of secondary fungal metabolites, vol 1. Academic, Amsterdam, pp 145–244Google Scholar
  42. Conder GA, Johnson SS, Nowakowski DS, Blake TE, Dutton FE, Nelson SJ, Thomas EM, Davis JP, Thompson DP (1995) Anthelmintic profile of the cyclodepsipeptide PF1022A in in vitro and in vivo models. J Antibiot 48:820–823PubMedCrossRefGoogle Scholar
  43. Curtis RW, Stevenson WR, Tuite J (1974) Malformin in Aspergillus niger-infected onion bulbs (Allium cepa). Appl Environ Microbiol 28:362–365Google Scholar
  44. Daferner M (2000) Antibiotisch aktive Sekundärstoffe aus höheren marinen Pilzen. Dissertation Universität KaiserslauternGoogle Scholar
  45. Dalsgaard PW, Blunt JW, Munro MHG, Larsen TO, Christophersen C (2004a) Psychrophilin B and C: cyclic nitropeptides from the psychrotolerant fungus Penicillium rivulum. J Nat Prod 67:1950–1952PubMedCrossRefGoogle Scholar
  46. Dalsgaard PW, Larsen TO, Frydenvang K, Christophersen C (2004b) Psychrophilin A and cycloaspeptide D, novel cyclic peptides from the psychrotolerant fungus Penicillium ribeum. J Nat Prod 67:878–881PubMedCrossRefGoogle Scholar
  47. Dalsgaard PW, Larsen TO, Christophersen C (2005) Bioactive cyclic peptides from the psychrotolerant fungus Penicillium algidum. J Antibiot 58:141–144PubMedCrossRefGoogle Scholar
  48. Darkin-Rattray SJ, Gurnett AM, Myers RW, Dulski PM, Crumley TM, Allocco JJ, Cannova C, Meinke PT, Colletti SL, Bednarel MA, Singh SB, Goetz MA, Dombrowski AW, Polishook ED, Schmatz DM (1996) Apicidin, a novel antiprotozoal agent that inhibits parasite histone deacetylase. Proc Natl Acad Sci U S A 93:13143–31147PubMedPubMedCentralCrossRefGoogle Scholar
  49. Davoli P, Mucci A, Schenetti L, Weber RWS (2005) Laetiporic acids, a family of non-carotenoid polyene pigments from fruit-bodies and liquid cultures of Laetiporus sulphureus (Polyporales, Fungi). Phytochemistry 66:817–823PubMedCrossRefGoogle Scholar
  50. de Garvalho MP, Abraham W-R (2012) Antimicrobial and biofilm inhibiting diketopiperazines. Curr Med Chem 19:3564–3577CrossRefGoogle Scholar
  51. Degenkolb T, Gams W, Brückner H (2008) Natural cyclopeptaibiotics and related cyclic tetrapeptides: structural diversity and future prospects. Chem Biodivers 5:693–706PubMedCrossRefGoogle Scholar
  52. Demain AL, Elander RP (1999) The beta-lactam antibiotics: past, present, and future. Antonie Van Leeuwenhoek 75:5–19PubMedCrossRefGoogle Scholar
  53. Denning DW (2002) Echinocandins: a new class of antifungals. J Antimicrob Chemother 49:889–891PubMedCrossRefGoogle Scholar
  54. Denning DW (2003) Echinocandin antifungal drugs. Lancet 362:1142–1151PubMedCrossRefGoogle Scholar
  55. Ding G, Chen AJ, Lan J, Zhang H, Chen X, Liu X, Zou Z (2012) Sesquiterpenes and cyclopeptides from the endophytic fungus Trichoderma asperellum Samuels, Lieckf. & Nirenberg. Chem Biodivers 9:1205–1212PubMedCrossRefGoogle Scholar
  56. Ding W, Liu W-Q, Jia Y, Li Y, van der Donk W, Zhang Q (2016) Biosynthetic investigation of phomopsins reveals a widespread pathway for ribosomal natural products in Ascomycetes. Proc Natl Acad Sci U S A 113:3521–3526PubMedPubMedCentralCrossRefGoogle Scholar
  57. Du L, Risinger AL, King JB, Powell DR, Cichewicz RH (2014a) A potent HDAC inhibitor, 1-alaninechlamydocin, from a Tolypocladium sp. induces G2/M cell cycle arrest and apoptosis in MIA PaCa-2 cells. J Nat Prod 77:1753–1757PubMedPubMedCentralCrossRefGoogle Scholar
  58. Du L, Zhang P, Li X-M, Li C-S, Cui C-M, Wang B-G (2014b) Cyclohexadepsipeptides of the isaridin class from the marine derived fungus Beauveria felina EN-135. J Nat Prod 77:1164–1169PubMedCrossRefGoogle Scholar
  59. Du L, Li X-M, Zhang P, Li C-S, Wang B-G (2014c) Cyclodepsipeptides and other O-containing heterocyclic metabolites from Beauveria felina EN-135, a marine-derived entomopathogenic fungus. Mar Drugs 12:2816–2826PubMedPubMedCentralCrossRefGoogle Scholar
  60. Ebada SS, Fischer T, Hamacher A, Du F-Y, Roth YO, Kassack MU, Wang B-G, Roth EH (2014) Psychrophilin E, a new cyclotripeptide, from co-fermentation of two marine alga-derived fungi of the genus Aspergillus. Nat Prod Res 28:776–781PubMedCrossRefGoogle Scholar
  61. Ebrahim W, Kjer J, El Amrani M, Wray V, Lin W, Ebel R, Lai D, Proksch P (2012) Pullularins E and F, two new peptides from the endophytic fungus Bionectria ochroleuca isolated from the mangrove plant Sonneratia caseolaris. Mar Drugs 10:1081–1091PubMedPubMedCentralCrossRefGoogle Scholar
  62. Eichhorn H, Lessing F, Winterberg B, Schirawski J, Kamper J, Mueller P, Kahmann R (2006) A ferroxidation/permeation iron uptake system is required for virulence in Ustilago maydis. Plant Cell 18:3332–3345PubMedPubMedCentralCrossRefGoogle Scholar
  63. Eickman N, Clardy J, Cole RJ, Kirksey JW (1975) The structure of fumitremorgin A. Tetrahedron Lett 16:1051–1054CrossRefGoogle Scholar
  64. Eisendle M, Schrettl M, Kragl C, Müller D, Illmer P, Haas H (2006) The intracellular siderophore ferricrocin is involved in iron storage, oxidative-stress resistance, germination, and sexual development in Aspergillus nidulans. Eukaryot Cell 5:1596–1603PubMedPubMedCentralCrossRefGoogle Scholar
  65. Eisfeld K (2009) Non-ribosomal peptide synthetases of fungi. In: Anke T, Weber D (eds) Physiology and genetics (The Mycota, vol XV). Springer, Berlin, pp 305–330CrossRefGoogle Scholar
  66. Elliott CE, Gardiner DM, Thoma G, Cozijnsen A, van de Wouw A, Howlett BJ (2007) Production of the toxin sirodesmin PL by Leptosphaeria maculans during infection of Brassica napus. Mol Plant Pathol 8:791–802PubMedCrossRefGoogle Scholar
  67. Ernst-Russell M, Chai CL, Hurne AM, Waring P, Hockless DCR, Elix JA (1999) Structure revision and cytotoxic activity of the scabrosin esters, epithiopiperazinediones from the lichen Xanthoparmelia scabrosa. Aust J Chem 52:279–283CrossRefGoogle Scholar
  68. Feifel SC, Schmiederer T, Hornbogen T, Berg H, Süssmuth RD, Zocher R (2007) In vitro synthesis of new enniatins: probing the α-D-hydroxy carboxylic acid binding pocket of the multienzyme enniatin synthetase. Chembiochem 8:1767–1770PubMedCrossRefGoogle Scholar
  69. Fostel JM, Lartey PA (2000) Emerging novel antifungal agents. Drug Discov Today 5:25–32PubMedCrossRefGoogle Scholar
  70. Fredenhagen A, Molleyres LP, Böhlendorf B, Laue G (2006) Structure determination of neofrapeptins A to N: peptides with insecticidal activity produced by the fungus Geotrichum candidum. J Antibiot 59:267–280PubMedCrossRefGoogle Scholar
  71. Fridrichsons J, Mathieson AML (1962) The structure of sporidesmin: causative agent of facial eczema in sheep. Tetrahedron Lett 3:1265–1268CrossRefGoogle Scholar
  72. Fujie A, Iwamoto T, Muramatsu H, Okudaira T, Nitta K, Nakanishi T, Sakamoto K, Hori Y, Hino M, Hashimoto S, Okuhara M (2000) FR901469, a novel antifungal antibiotic from an unidentified fungus No 11243. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological properties. J Antibiot 53:912–919PubMedCrossRefGoogle Scholar
  73. Fujie A, Muramatsu H, Yoshimura S, Hashimoto M, Shigematsu N, Takase S (2001) FR901469, a novel antifungal antibiotic from an unidentified fungus No 112434. III. Structure determination. J Antibiot 54:588–594PubMedCrossRefGoogle Scholar
  74. Gao X, Haynes SW, Ames BD, Wang P, Vien LP, Walsh CT, Tang Y (2012) Cyclization of fungal nonribosomal peptides by a terminal condensation-like domain. Nat Chem Biol 8:823–830PubMedPubMedCentralCrossRefGoogle Scholar
  75. Gardiner DM, Waring P, Howlett BJ (2005) The epipolythiodioxopiperazine (ETP) class of fungal toxins: distribution, mode of action, functions and biosynthesis. Microbiology 151:1021–1032PubMedCrossRefGoogle Scholar
  76. Gevers W, Kleinkauf H, Lipmann F (1968) The activation of amino acids for biosynthesis of gramicidin S. Proc Natl Acad Sci U S A 63:1335–1342CrossRefGoogle Scholar
  77. Glinski M, Hornbogen T, Zocher R (2001) Enzymatic synthesis of fungal N-methylated cyclopeptides and depsipeptides. In: Kirst H, Yeh WK, Zmijewski M (eds) Enzyme technologies for pharmaceutical and biotechnological applications. Dekker, New York, pp 471–497Google Scholar
  78. Gournelis DC, Laskaris GG, Verpoorte R (1998) Cyclopeptide alkaloids. In: Herz W, Falk H, Kirby GW, Moore RE, Tamm C (eds) Fortschritte der Chemie organischer Naturstoffe, vol 75. Springer, Wien, New York, pp 1–179Google Scholar
  79. Gross ML, McCrery D, Crow F, Tomer KB, Pope MR, Ciuffetti LM, Knoche HW, Daly JM, Dunkle DL (1982) The structure of the toxin from Helminthosporium carbonum. Tetrahedron Lett 51:5381–5384CrossRefGoogle Scholar
  80. Gruendlinger M, Yasmin S, Lechner BE, Geley S, Schrettl M, Hynes M, Haas H (2013) Fungal siderophore biosynthesis is partially localized in peroxisomes. Mol Microbiol 88:862–875CrossRefGoogle Scholar
  81. Gulder TAM, Hong H, Correa J, Egereva E, Wiese J, Imhoff JE, Gross H (2012) Isolation, structure elucidation and the total synthesis of lajollamide A from the marine fungus Asteromyces cruciatus. Mar Drugs 10:2912–2935PubMedPubMedCentralCrossRefGoogle Scholar
  82. Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69:509–526PubMedPubMedCentralCrossRefGoogle Scholar
  83. Gupta S, Peiser G, Nakajima T, Hwang Y-S (1994) Characterization of a phytotoxic cyclotetrapeptide, a novel chlamydocin analogue, from Verticillium coccosporum. Tetrahedron Lett 35:6009–6012CrossRefGoogle Scholar
  84. Haas H (2014) Fungal siderophore metabolism with a focus on Aspergillus fumigatus. Nat Prod Rep 31:1266–1276PubMedPubMedCentralCrossRefGoogle Scholar
  85. Haas H, Eisendle M, Turgeon BG (2008) Siderophores in fungal physiology and virulence. Annu Rev Phytopathol 46:149–187PubMedCrossRefGoogle Scholar
  86. Hagimori K, Fukuda T, Hasegawa Y, Omura S, Tomoda H (2007) Fungal malformins inhibit bleomycin-induced G2 checkpoint in Jurkat cells. Biol Pharm Bull 30:1379–1383PubMedCrossRefGoogle Scholar
  87. Haritakun R, Sappan M, Suvannakad R, Tasanathai K, Isaka M (2010) An antimycobacterial cyclodepsipeptide from the entomopathogenic fungus Ophiocordyceps communis BCC 16475. J Nat Prod 73:75–78PubMedCrossRefGoogle Scholar
  88. Hedge VR, Puar MS, Dai P, Pu H, Patel M, Anthes JC, Richard C, Terracciano J, Das PR, Gullo V (2001) A family of depsipeptide fungal metabolites, as selective and competitive human tachykinin receptor (NK2) antagonists: fermentation, isolation, physico-chemical properties, and biological activity. J Antibiot 54:125–135PubMedCrossRefGoogle Scholar
  89. Hof C, Eisfeld K, Welzel K, Antelo L, Foster AJ, Anke H (2007) Ferricrocin synthesis in Magnaporthe grisea and its role in pathogenicity. Mol Plant Pathol 8:163–172PubMedCrossRefGoogle Scholar
  90. Hommel U, Weber H-P, Oberer L, Naegeli HU, Oberhauser B, Foster CA (1996) The 3D-structure of a natural inhibitor of cell adhesion molecule expression. FEBS Lett 379:69–73PubMedCrossRefGoogle Scholar
  91. Houston DR, Shiomi K, Arai N, Omura S, Peter MG, Turberg A, Synstad B, Eijsink VG, van Aalten DMF (2002) High-resolution structures of a chitinase complex with natural product cyclopentapeptide inhibitors: mimicry of carbohydrate substrate. Proc Natl Acad Sci U S A 99:9127–9132PubMedPubMedCentralCrossRefGoogle Scholar
  92. Howard DH (1999) Acquisition, transport, and storage of iron by pathogenic fungi. Clin Microbiol Rev 12:394–404PubMedPubMedCentralGoogle Scholar
  93. Hu Q, Dong T (2015) Non-ribosomal peptides from entomogenous fungi. Soil Biol 43:169–206CrossRefGoogle Scholar
  94. Huang H, She Z, Lin Y, Vrijmoed LLP, Lin W (2007) Cyclic peptides from an endophytic fungus obtained from a mangrove leaf (Kandelia candel). J Nat Prod 70:1696–1699PubMedCrossRefGoogle Scholar
  95. Huang S, Ding W, Li C, Cox DG (2014) Two new cyclopeptides from the co-culture broth of two marine mangrove fungi and their antifungal activity. Pharmacogn Mag 10:410–414PubMedPubMedCentralCrossRefGoogle Scholar
  96. Hume AM, Chai CLL, Moermann K, Waring P (2002) Influx of calcium through a redox-sensitive plasma membrane channel in thymocytes causes early necrotic cell death induced by the epipolythiodioxopiperazine toxins. J Biol Chem 35:31631–31638Google Scholar
  97. Hwang Y, Rowley D, Rhodes D, Gertsch J, Fenical W, Bushman F (1999) Mechanism of inhibition of a poxvirus topoisomerase by the marine natural product sansalvamide A. Mol Pharmacol 55:1049–1053PubMedCrossRefGoogle Scholar
  98. Hwang IH, Che Y, Swenson DC, Gloer JB, Wicklow DT (2016) Haenamindole and fumiquinazoline analogs from a fungicolous isolate of Penicillium lanosum. J Antibiot 69:631–636PubMedCrossRefGoogle Scholar
  99. Isaka M, Kittakoop P, Kirtikara K, Hywel-Jones NI, Thebtaranonth Y (2005a) Bioactive substances from insect pathogenic fungi. Acc Chem Res 38:813–823PubMedCrossRefGoogle Scholar
  100. Isaka M, Palasarn S, Rachtawee P, Vimuttipong S, Kongsaeree P (2005b) Unique diketopiperazine dimers from the insect pathogenic fungus Verticillium hemipterigenum BCC 1449. Org Lett 7:2257–2260PubMedCrossRefGoogle Scholar
  101. Isaka M, Palasarn S, Kocharin K, Hywel-Jones NI (2007a) Comparison of the bioactive secondary metabolites from the scale insect pathogens, anamorph Paecilomyces cinnamomeus, and teleomorph Torrubiella luteorostrata. J Antibiot 60:577–581PubMedCrossRefGoogle Scholar
  102. Isaka M, Srianoh U, Lartpornmatulee N, Boonruangprapa T (2007b) ES-242 derivatives and cycloheptapeptides from Cordyceps sp. strains BCC 16173 and BCC 16176. J Nat Prod 70:1601–1604PubMedCrossRefGoogle Scholar
  103. Isaka M, Palasarn S, Supothina S, Komwijit S, Luangsaard JJ (2011) Bioactive compounds from the scale insect pathogenic fungus Conoideocrella tenuis BCC 18627. J Nat Prod 74:782–789PubMedCrossRefGoogle Scholar
  104. Isaka M, Palasarn S, Komwijit S, Somrithipol S, Sommai S (2014) Pleosporin A, an antimalarial cyclodepsipeptide from an elephant dung fungus (BCC7069). Tetrahedron Lett 55:469–471CrossRefGoogle Scholar
  105. Ishidoh K, Kinoshita H, Igarashi Y, Ijara F, Nihira T (2014a) Cyclic lipodepsipeptides verlamelin A and B, isolated from entompathogenic fungus Lecanicillium sp. J Antibiot 67:459–463PubMedCrossRefGoogle Scholar
  106. Ishidoh K, Kinoshita H, Nihira T (2014b) Identification of a gene cluster responsible for the biosynthesis of cyclic lipopeptide verlamelin. Appl Microbiol Biotechnol 98:7501–7510PubMedCrossRefGoogle Scholar
  107. Ishiyama D, Sato T, Honda R, Senda H, Konno H, Kanazawa S (2000) Glomosporin, a novel antifungal cyclic depsipeptide from Glomospora sp. II. Structure elucidation. J Antibiot 53:525–631PubMedCrossRefGoogle Scholar
  108. Itazaki H, Nagashima K, Sugita K, Yoshida H, Kawamura Y, Yashuda Y, Matsumoto K, Ishii K, Uotani N, Nakai H, Terui A, Yoshimatsu S, Ikenishi Y, Nakagawa Y (1990) Isolation and structural elucidation of new cyclotetrapeptides, trapoxins A and B, having detransformation. J Antibiot 43:1524–1532PubMedCrossRefGoogle Scholar
  109. Iwamoto T, Fujie A, Sakamota K, Tsurumi Y, Shigematsu N, Yamashita M, Hashimoto S, Okuhara M, Kohsaka M (1994a) WF11899A, B and C, novel antifungal lipopeptides I. Taxonomy, fermentation, isolation and physico-chemical properties. J Antibiot 47:1084–1091PubMedCrossRefGoogle Scholar
  110. Iwamoto T, Fujie A, Nitta K, Hashimoto S, Okuhara M, Kohsaka M (1994b) WF11899A, B and C, novel antifungal lipopeptides II. Biological properties. J Antibiot 45:1092–1097CrossRefGoogle Scholar
  111. Jiang Z, Barret MO, Boyd KG, Adams DR, Boid ASF, Burgess JG (2002) JM47, a cyclic tetrapeptide HC-toxin analogue from a marine Fusarium species. Phytochemistry 60:33–38PubMedCrossRefGoogle Scholar
  112. Jiang W, Ye P, Che CTA, Wang K, Liu P, He S, Wu X, Gan L, Ye Y, Wu B (2013) Two novel hepatocellular carcinoma cycle inhibitory cyclodepsipeptides from a hydrothermal vent crab-associated fungus Aspergillus clavatus C2WU. Mar Drugs 11:4761–4772PubMedPubMedCentralCrossRefGoogle Scholar
  113. Johnson MD, Perfect JR (2003) Caspofungin: first approved agent in a new class of antifungals. Expert Opin Pharmacother 4:807–823PubMedCrossRefGoogle Scholar
  114. Kaida K, Fudou R, Kameyama T, Tubaki K, Suzuki Y, Ojika M, Sakagami Y (2001) New cyclic depsipeptide antibiotics, clavariopsins A and B, produced by an aquatic hyphomycete, Clavariopsis aquatica. J Antibiot 54:17–21PubMedCrossRefGoogle Scholar
  115. Kajimura Y, Aoki T, Kuramochi K, Kobayashi S, Sugawara F, Watanabe N, Arai T (2008) Neoechinulin A protects PC12 cells against MPP+-induced cytotoxicity. J Antibiot 61:330–333PubMedCrossRefGoogle Scholar
  116. Kamei K, Watanabe A (2005) Aspergillus mycotoxins and their effect on the host. Med Mycol 43(Suppl 1):95–99CrossRefGoogle Scholar
  117. Kanasaki R, Kobayashi M, Fujine K, Sato I, Hashimoto M, Takase S, Tsurumi Y, Fujie A, Hino M, Hashimoto S (2006a) FR227673 and FR190293, novel antifungal lipopeptides from Chalara sp. No22210 and Tolypocladium parasiticum No 16616. J Antibiot 59:158–167PubMedCrossRefGoogle Scholar
  118. Kanasaki R, Sakamota K, Hashimoto M, Takase S, Tsurumi Y, Fujie A, Hino M, Hashimoto S, Hori Y (2006b) FR209602 and related compounds, novel antifungal lipopeptides from Coleophoma crateriformis No. 738. J Antibiot 59:137–144PubMedCrossRefGoogle Scholar
  119. Kanasaki R, Abe F, Kobayashi M, Katsuoka M, Hashimoto M, Takase S, Tsurumi Y, Fujie A, Hino M, Hashimoto S, Hori Y (2006c) FR220897 and FR220899, novel antifungal lipopeptides from Coleophoma empetri No. 14573. J Antibiot 59:149–157PubMedCrossRefGoogle Scholar
  120. Kawada M (2016) Small molecules modulating tumor-stromal cell interactions: new candidates for anti-tumor drugs. J Antibiot 69:411–414PubMedCrossRefGoogle Scholar
  121. Kawada M, Someno T, Inoue H, Ohba S, Masuda T, Kato T, Ikeda D (2010) NBRI16716A, a new antitumor compound against human prostate cancer cells, produced by Perisporiopsis melioloides Mer-f16716. J Antibiot 63:319–323PubMedCrossRefGoogle Scholar
  122. Kawahara T, Itoh M, Lozone I, Izumikawa M, Sakata N, Tsuchida T, Shin-ya K (2016) MBJ-0110, a novel cyclopeptide isolated from the fungus Penicillium sp. f25267. J Antibiot 69:66–68PubMedCrossRefGoogle Scholar
  123. Keller U, Tudzynski P (2002) Ergot alkaloids. In: Osiewacz HD (ed) Industrial applications (Mycota X). Springer, Berlin, pp 157–181CrossRefGoogle Scholar
  124. Keller-Juslen C, Kuhn M, Loosli HR, Petcher TJ, Weber HP, von Wartburg A (1976) Struktur des Cyclopeptid-Antibiotikums SL 7810 (= Echinocandin B). Tetrahedron Lett 17:4147–4150CrossRefGoogle Scholar
  125. Kershaw M, Moorhouse ER, Bateman R, Reynolds SE, Charnley AK (1999) The role of destruxins in the pathogenicity of Metarhizium anisopliae for three species of insects. J Invertebr Pathol 74:213–223PubMedCrossRefGoogle Scholar
  126. Kikuchi H, Hoshikawa T, Fujimura S, Sakata N, Kurata S, Katou Y, Oshima Y (2015) Isolation of a cyclic depsipetide, aspergillicin F, and synthesis of aspergillicins with innate immune-modulating activity. J Nat Prod 78:1949–1956PubMedCrossRefGoogle Scholar
  127. Kim M-Y, Sohn JH, Ahn JS, Oh H (2009) Alternaramide, a cyclic depsipeptide from the marine-derived fungus Alternaria sp. SF-5016. J Nat Prod 72:2065–2068PubMedCrossRefGoogle Scholar
  128. Kim EL, Li JL, Xuao B, Hong J, Yoo ES, Yoon WD, Jung H (2012) A new cyclic tetrapeptide from the jellyfish-derived fungus Phoma sp. Chem Pharm Bull 60:1590–1593PubMedGoogle Scholar
  129. Kleinkauf H, von Döhren H (1997) Peptide antibiotics. In: Kleinkauf H, von Döhren H (eds) Products of secondary metabolism (Biotechnology, 7) VCH, Weinheim, pp 277–322Google Scholar
  130. Kleinwachter P, Dahse HM, Luhmann U, Schlegel B, Dornberger K (2001) Epicorazine C, an antimicrobial metabolite from Stereum hirsutum HKI 0195. J Antibiot 54:521–525PubMedCrossRefGoogle Scholar
  131. Ko W, Sohn JH, Jang JH, Ahn JS, Kang DG, Lee HS, Kim JS, Kim YC, Oh H (2016) Inhibitory effects of alternaramide on inflammatory mediator expression through TLR4-MyD88-mediated inhibition of NF-KB and MAK pathway signaling in lipopolysaccharide-stimulated RAW264.7 and BV2 cells. Chem Biol Interact 244:16–26PubMedCrossRefGoogle Scholar
  132. Kobayashi M, Kawashima H, Takemori K, Ito H, Murai A, Masuda S, Yamada K, Uemura D, Horio F (2012) Ternatin, a cyclic peptide isolated from mushroom, and its derivative suppress hyperglycemia and hepatic fatty acid synthesis in spontaneously diabetic KK-Ay mice. Biochem Biophys Res Commun 427:299–304PubMedCrossRefGoogle Scholar
  133. Kobbe B, Cushman M, Wogan GN, Demain AL (1977) Production and antibacterial activity of malformin C, a toxic metabolite of Aspergillus niger. Appl Environ Microbiol 33:996–997PubMedPubMedCentralGoogle Scholar
  134. Kong F, Wang Y, Liu P, Dong T, Zhu W (2014) Thiodiketopiperazines from the marine-derived fungus Phoma sp. OUCMDZ-1847. J Nat Prod 77:132–137PubMedCrossRefGoogle Scholar
  135. Krasnoff SB, Keresztes I, Gillilan RE, Szebenyi DME, Donzelli BGG, Vhurchill ACL, Gibson DM (2007) Serinocyclins A and B, cyclic heptapeptides from Metarhizium anisopliae. J Nat Prod 70:1919–1924PubMedCrossRefGoogle Scholar
  136. Krasnoff SB, Englich U, Miller PG, Shuler ML, Glahn RP, Donzelli BGG, Gibson DM (2012) Metacridamides A and B, macrocycles from conidia of the entomopathogenic fungus Metarhizium acridum. J Nat Prod 75:175–180PubMedPubMedCentralCrossRefGoogle Scholar
  137. Kürnsteiner H, Zinner M, Kück U (2002) Immunosuppressants. In: Osiewacz HD (ed) Industrial applications (Mycota, X). Springer, Berlin, pp 129–155CrossRefGoogle Scholar
  138. Laatsch H (2017) AntiBase 2017, a database for rapid dereplication of microbial natural products, and annual updates. Wiley-VCH, GermanyGoogle Scholar
  139. Leal SM, Roy S, Vareechon C, de Jesus Carrion S, Clark H, Lopez-Berges MS, di Pietro A, Schrettl M, Beckmann N, Redl B, Haas H, Pearlman E (2013) Targeting iron acquisition blocks infection with the fungal pathogens Aspergillus fumigatus and Fusarium oxysporum. PLoS Pathog:e1003436Google Scholar
  140. Lee KK, Gloer JB, Scott JA, Malloch D (1995) Petriellin A: a novel antifungal depsipeptide from the coprophilous fungus Petriella sordida. J Org Chem 60:5384–5385CrossRefGoogle Scholar
  141. Leistner E, Steiner U (2017) The genus Periglandula and its symbiotum with morning glory plants (Convolvulaceae). In: Anke T, Schüffler A (eds) Physiology and genetics. Springer, HeidelbergGoogle Scholar
  142. Lewis JR (2002) Amaryllidaceae, Sceletium, imidazole, oxazole, thiazole, peptide and miscellaneous alkaloids. Nat Prod Rep 19:223–258PubMedCrossRefGoogle Scholar
  143. Li C, Oberlies NH (2005) The most widely recognized mushroom: chemistry of the genus Amanita. Life Sci 78:532–538PubMedCrossRefGoogle Scholar
  144. Li Y, Li X, Kim S-K, Kang JS, Choi HD, Rho JR, Son BW (2004) Golmaenone, a new diketopiperazine alkaloid from the marine-derived fungus Aspergillus sp. Chem Pharm Bull 52:375–376PubMedCrossRefGoogle Scholar
  145. Li X, Kim S-K, Nam KW, Kang JS, Choi HD, Son BW (2006) A new antibacterial dioxopiperazine alkaloid related to gliotoxin from a marine isolate of the fungus Pseudallescheria. J Antibiot 59:248–250PubMedCrossRefGoogle Scholar
  146. Li YY, Hu ZY, Shen YM (2011) Two new cyclopeptides and one new nonenolide from Xylaria sp. 101. Nat Prod Commun 6:1843–1846PubMedGoogle Scholar
  147. Li YY, Liu P, Tang Y, Li HM, Tang YL, Liang XH, Tang YJ (2013) Novel cerebrosides isolated from the fermentation mycelia of Tuber indicum. Helv Chim Acta 96:702–709CrossRefGoogle Scholar
  148. Li C, Wang J, Luo C, Ding W, Cox DG (2014) A new cyclopeptide with antifungal activity from the co-culture broth of two marine mangrove fungi. Nat Prod Res 28:616–621PubMedCrossRefGoogle Scholar
  149. Li G, Kusari S, Goz C, Strohmann C, Spiteller M (2016) Three cyclic pentapeptides and a cyclic lipopeptide produced by endophytic Fusarium decemcellulare LG53. RSC Adv 6:54092–54099CrossRefGoogle Scholar
  150. Liermann JC, Opatz T, Kolshorn H, Antelo L, Hof C, Anke H (2009) Omphalotins E-I, five oxidatively modified nematicidal cyclopeptides from Omphalotus olearius. Eur J Org Chem 8:1256–1262CrossRefGoogle Scholar
  151. Lira SP, Vita-Marques AM, Seleghim MHR, Bugni TS, LaBarbera DV, Sette LD, Sponchiado SRP, Ireland CM, Berlinck RGS (2006) New destruxins from the marine-derived fungus Beauveria felina. J Antibiot 59:553–563PubMedCrossRefGoogle Scholar
  152. Liu J-K (2005) N-containing compounds of macromycetes. Chem Rev 105:2723–2744PubMedCrossRefGoogle Scholar
  153. Liu S, Shen Y (2011) A new cyclic peptide from the marine fungal strain Aspergillus sp. AF119. Chem Nat Compd 47:786–788CrossRefGoogle Scholar
  154. Lorenz P, Jensen PR, Fenical W (1998) Mactanamide, a new fungistatic diketopiperazine produced by a marine Aspergillus sp. Nat Prod Lett 12:55–60CrossRefGoogle Scholar
  155. Luangsa-Ard JJ, Berkaew P, Ridkaew R, Hywel-Jones NL, Isaka M (2009) A beauvericin hot spot in the genus Isaria. Mycol Res 113:1389–1395PubMedCrossRefGoogle Scholar
  156. Ma YM, Liang XA, Zhang HC, Liu R (2016) Cytotoxic and antibiotic cyclic pentapeptide from an endophytic Aspergillus tamarii of Ficus carica. J Agric Food Chem 64:3789–3793PubMedCrossRefGoogle Scholar
  157. Maligie MA, Selitrennikoff CP (2005) Cryptococcus neoformans resistance to echinocandins: (1,3)β-glucan synthase activity is sensitive to echinocandins. Antimicrob Agents Chemother 49:2851–2856PubMedPubMedCentralCrossRefGoogle Scholar
  158. Malmstrom J, Ryager A, Anthoni U, Nielsen PH (2002) Unguisin C, a GABA-containing cyclic peptide from the fungus Emericella unguis. Phytochemistry 60:869–887PubMedCrossRefGoogle Scholar
  159. Martins MB, Carvalho I (2007) Diketopiperazines: biological activity and synthesis. Tetrahedron 64:9923–9932CrossRefGoogle Scholar
  160. Matha V, Jegorov A, Weiser J, Pillai JS (1992) The mosquitocidal activity of conidia of Tolypocladium tundrense and Tolypocladium terricola. Cytobios 69:163–170PubMedGoogle Scholar
  161. Matsuda D, Namatame I, Tomoda H, Kobayashi S, Zocher R, Kleinkauf H, Omura S (2004) New beauverolides produced by amino acid-supplemented fermentation of Beauveria sp. FO-6979. J Antibiot 57:1–9PubMedCrossRefGoogle Scholar
  162. Mayer A, Sterner O, Anke H (1997) Omphalotin, a new cyclic peptide with potent nematicidal activity from Omphalotus olearius. 1. Fermentation and biological activity. Nat Prod Lett 10:25–33CrossRefGoogle Scholar
  163. Mayer A, Kilian M, Hoster B, Sterner O, Anke H (1999) In vitro and in vivo nematicidal activities of the cyclic dodecapeptide omphalotin A. Pest Sci 55:27–30CrossRefGoogle Scholar
  164. Miyado S, Kawasaki H, Aoyagi K, Yaguchi T, Okada T, Sugiyama J (2000) Taxonomic position of the fungus producing the anthelmintic PF1022 based on the 18S rRNA gene base sequence. Nippon Kinzoku Gakkai Kaiho 41:183–188Google Scholar
  165. Mochizuki K, Ohmori K, Tamura H, Shizuri Y, Nishiyama S, Miyoshi E, Yamamura S (1993) The structures of bioactive cyclodepsipeptides, beauveriolides I and II, metabolites of entomopathogenic fungi Beauveria sp. Bull Chem Soc Jpn 66:3041–3046CrossRefGoogle Scholar
  166. Molnar I, Gibson DM, Krasnoff SB (2010) Secondary metabolites from entomopathogenic hypocrealan fungi. Nat Prod Rep 27:1241–1275PubMedCrossRefGoogle Scholar
  167. Monma S, Sunazuka T, Nagai K, Arai T, Shiomi K, Matsui R, Mura S (2006) Verticilide: elucidation of absolute configuration and total synthesis. Org Lett 8:5601–5604PubMedCrossRefGoogle Scholar
  168. Mori H, Urano Y, Abe F, Furukawa S, Tsurumi Y, Sakamoto K, Hashimoto M, Takase S, Hino M, Fujii T (2003) FR235222, a fungal metabolite, is a novel immunosuppressant that inhibits mammalian histone deacetylase (HDAC) 1. Taxonomy, fermentation, isolation, and biological activities. J Antibiot 56:72–79PubMedCrossRefGoogle Scholar
  169. Morino T, Masuda A, Yamada M, Nishimoto Y, Nishikiori T, Saito S, Shimada (1994) Stevastelins, novel immunosuppressants produced by Penicillium. J Antibiot 47:1341–1343Google Scholar
  170. Morris SA, Schwartz RE, Sesin DF, Masurekar P, Hallada TC, Schmatz DM, Bartizal K, Hensens OD, Zink DL (1994) Pneumocandin D0, a new antifungal agent and potent inhibitor of Pneumocystis carinii. J Antibiot 47:755–764PubMedCrossRefGoogle Scholar
  171. Morrison VA (2006) Echinocandin antifungals: review and update. Expert Rev Anti-Infect Ther 4:325–342PubMedCrossRefGoogle Scholar
  172. Müller J, Feifel SC, Schmiederer T, Zocher R, Süssmuth RD (2009) In vitro synthesis of new cyclodepsipeptides of the PF1022-type: probing the a-D-hydrox acid tolerance of the PF1022 synthetase. Chembiochem 10:323–328Google Scholar
  173. Nagano N, Umemura M, Izumikawa M, Kawano J, Ishii T, Kikuchi M, Tomii K, Kumagai T, Yoshimi A, Machida M, Abe K, Shin-ya K, Asai K (2016) Class of cyclic ribosomal peptide synthetic genes in filamentous fungi. Fungal Genet Biol 86:58–70PubMedCrossRefGoogle Scholar
  174. Namatame I, Zomoda H, Ishibashi S, Omura S (2004) Antiatherogenic activity of fungal beauverolides, inhibitors of lipid droplet accumulation in macrophages. Proc Natl Acad Sci U S A 101:737–742PubMedPubMedCentralCrossRefGoogle Scholar
  175. Nilanonta C, Isaka M, Chanphen R, Thong-orn N, Tanticharoen M, Thebtaranonth Y (2003) Unusual enniatins produced by the insect pathogenic fungus Verticillium hemipterigenum: isolation and studies on precursor-directed biosynthesis. Tetrahedron 59:1015–1020CrossRefGoogle Scholar
  176. Odds FC, Brown AJ, Gow NA (2003) Antifungal agents: mechanisms of action. Trends Microbiol 11:272–279PubMedCrossRefGoogle Scholar
  177. Oh DC, Ca K, Jensen PR, Fenical W (2007) Induced production of emericellamides A and B from the marine-derived fungus Emericella sp. in competing co-culture. J Nat Prod 70:515–520PubMedCrossRefGoogle Scholar
  178. Ohshiro T, Rudel LL, Omura S, Tomoda H (2007) Selectivity of microbial acyl-CoA:cholesterol acyltransferase inhibitors towards isoenzymes. J Antibiot 60:43–51PubMedCrossRefGoogle Scholar
  179. Ohyama T, Kurihara Y, Ono Y, Ishikawa T, Miyakoshi S, Hamano K, Arai M, Suzuki T, Igari H, Suzuki Y, Inukai M (2000) Arborcandins A, B, C, D, E, and F, novel 1,3-beta-glucan synthase inhibitors: production and biological activities. J Antibiot 53:1108–1116PubMedCrossRefGoogle Scholar
  180. Oide S, Moeder W, Krasnoff S, Gibson D, Haas H, Yoshioka K, Turgeon BG (2006) NPS6, encoding a nonribosomal peptide synthetase involved in siderophore-mediated iron metabolism, is a conserved virulence determinant of plant pathogenic ascomycetes. Plant Cell 18:2836–2853PubMedPubMedCentralCrossRefGoogle Scholar
  181. Oide S, Krasnoff SB, Gibson DM, Turgeon BG (2007) Intracellular siderophores are essential for ascomycete sexual development in heterothallic Cochliobolus heterostrophus and homothallic Gibberella zeae. Eukaryot Cell 6:1339–1353PubMedPubMedCentralCrossRefGoogle Scholar
  182. Ortíz-López FJ, Monteiro MC, González-Menéndez V, Tormo JR, Genilloud O, Bills GF, Vicente F, Zhang C, Roemer T, Singh SB, Reyes F (2015) Cyclic colisporifungin and linear cavinafungins, antifungal lipopeptides isolated from Colispora cavincola. J Nat Prod 78:468–475PubMedCrossRefGoogle Scholar
  183. Overy DP, Bayman P, Kerr RG, Bills GF (2014) An assessment of natural product discovery from marine (sensu strictu) and marine-derived fungi. Mycology 5:145–167PubMedPubMedCentralCrossRefGoogle Scholar
  184. Panaccione DC, Cipoletti JR, Sedlock AB, Blemings KP, Schradl CL, Machado C, Seidel GE (2006) Effects of ergot alkaloids on food preference and satiety in rabbits, as assessed with gene-knockout endophytes in perennial ryegrass (Lolium perenne). J Agric Food Chem 54:4582–4587PubMedCrossRefGoogle Scholar
  185. Pasqualotto AC, Denning DW (2008) New and emerging treatments for fungal infections. J Antimicrob Chemother 61(Suppl 1):i19–i30PubMedCrossRefGoogle Scholar
  186. Patil BB, Wakharkar RD, Chincholkar SB (1995) Siderophores of Cunninghamella blakesleeana NCIM 687. World J Microbiol Biotechnol 15:265–268CrossRefGoogle Scholar
  187. Pedley KF, Walton JD (2001) Regulation of cyclic peptide biosynthesis in a plant pathogenic fungus by a novel transcription factor. Proc Natl Acad Sci U S A 98:14174–14179PubMedPubMedCentralCrossRefGoogle Scholar
  188. Pedras MSC, Zaharia LI, Ward DE (2002) The destruxins: synthesis, biosynthesis, biotransformation, and biological activity. Phytochemistry 59:579–596PubMedCrossRefGoogle Scholar
  189. Pejin B, Jovanovic KK, Mojovic S, Aleksandar G (2013) New and highly potent antitumor natural products from marine-derived fungi: covering the period from 2003 to 2012. Curr Top Med Chem 13:2745–2766PubMedCrossRefGoogle Scholar
  190. Peng J, Gao H, Zhang X, Wang S, Wu C, Gu Q, Guo P, Tianjiao Zhu T, Dehai L (2014) Psychrophilins E−H and versicotide C, cyclic peptides from the marine-derived fungus Aspergillus versicolor ZLN-60. J Nat Prod 77:2218–2223PubMedCrossRefGoogle Scholar
  191. Pérez-Victoria I, Martín J, González-Menéndez V, de Pedro N, El Aouad N, Ortiz-López FJ, Tormo JR, Platas G, Vicente F, Bills GF, Genilloud O, Goetz MA, Reyes F (2012) Isolation and structural elucidation of cyclic tetrapeptides from Onychocola sclerotica. J Nat Prod 75:1210–1214PubMedCrossRefGoogle Scholar
  192. Pomilio AB, Battista ME, Vitale AA (2006) Naturally-occurring cyclopeptides: structures and bioactivity. Curr Org Chem 10:2075–2121CrossRefGoogle Scholar
  193. Prasad C (1995) Bioactive cyclic peptides. Peptides 16:151–164PubMedCrossRefGoogle Scholar
  194. Rees NH, Penfold DJ, Rowe ME, Chowdhry BZ, Cole SCJ, Samuels RI, Turner DL (1996) NMR studies of the conformation of destruxin A in water and in acetonitrile. Magn Reson Chem 34:237–241CrossRefGoogle Scholar
  195. Renshaw JC, Robson GD, Trinci APJ, Wiebe MG, Livens FR, Collison DC, Taylor RJ (2002) Fungal siderophores: structures, functions and applications. Mycol Res 106:1123–1142CrossRefGoogle Scholar
  196. Roth BD (1998) ACAT inhibitors: evolution from cholesterol-absorption inhibitors to antiatherosclerotic agents. Drug Disc Today 3:19–25CrossRefGoogle Scholar
  197. Rouxel T, Chupeau Y, Fritz R, Kollmann A, Bousquet J-F (1988) Biological effects of sirodesmin PL, a phytotoxin produced by Leptosphaeria maculans. Plant Sci 57:45–53CrossRefGoogle Scholar
  198. Rüegger A, Kuhn M, Lichti H, Loosli HR, Huguenin R, Quiquerez C, von Wartburg A (1975) Cyclosporin A, ein immunsuppressiv wirksamer Peptidmetabolit aus Trichoderma polysporum (Link ex Pers.) Rifai. Helv Chim Acta 59:1075–1092CrossRefGoogle Scholar
  199. Rukachaisirikul V, Chantaruk S, Tansakul C, Saithong S, Chaicharernwimonkoon L, Pakawatchai C, Isaka M, Intereya K (2006) A cyclopeptide from the insect pathogenic fungus Cordyceps sp. BCC 1788. J Nat Prod 69:305–307PubMedCrossRefGoogle Scholar
  200. Saeger B, Schmitt-Wrede HP, Dehnhardt M, Benten WP, Krucken J, Harder A, von Samson-Himmelstjerna G, Wiegand H, Wunderlich F (2001) Latrophilin-like receptor from the parasitic nematode Haemonchus contortus as target for the anthelmintic depsipeptide PF1022A. FASEB J 15:1332–1334PubMedCrossRefGoogle Scholar
  201. Saito T, Hirai H, Kim Y-J, Kojima Y, Matsunaga Y, Nishida H, Sakakibara T, Suga O, Sujaku T, Kojima N (2002) CJ 15208, a novel kappa opioid receptor antagonist from a fungus, Ctenomyces serratus ATCC15502. J Antibiot 55:847–854PubMedCrossRefGoogle Scholar
  202. Sarabia F, Chammaa S, Sánchez Ruiz A, Martín Ortiz L, López Herrera FJ (2004) Chemistry and biology of cyclic depsipeptides of medicinal and biological interest. Curr Med Chem 11:1309–1332PubMedCrossRefGoogle Scholar
  203. Sasaki T, Takagi M, Yaguchi T, Miyado S, Okada T, Koyama M (1992) A new anthelmintic cyclodepsipeptide, PF1022. J Antibiot 45:692–697PubMedCrossRefGoogle Scholar
  204. Sato T, Ishiyama D, Honda R, Senda H, Konno H, Tokumasu S, Kanazawa S (2000) Glomosporin, a novel cyclic depsipeptide from Glomospora sp. I. Production, isolation, physico-chemical properties, and biological activities. J Antibiot 53:597–602PubMedCrossRefGoogle Scholar
  205. Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340PubMedCrossRefGoogle Scholar
  206. Schepper de S, Bruwiere H, Verhulst T, Steller U, Andries L, Wouters W, Janicot M, Arts J, Heusden van J (2003) Inhibition of histone deacylases by chlamydocin induces apoptosis and proteasome-mediated degradation of survivin. J Pharmacol Exp Ther 304:881–888CrossRefGoogle Scholar
  207. Scherkenbeck J, Jeschke P, Harder A (2002) PF1022A and related cyclodepsipeptide—a novel class of anthelmintics. Curr Top Med Chem (7):759–777Google Scholar
  208. Scherlach K, Graupner K, Hertweck C (2013) Molecular bacteria-fungi interactions: effects on environment, food, and medicine. Annu Rev Microbiol 67:375–397PubMedCrossRefGoogle Scholar
  209. Schmidt FR (2002) Beta-lactam antibiotics: aspects of manufacture and therapy. In: Osiewacz HD (ed) Industrial applications (Mycota, X). Springer, Berlin, pp 69–91CrossRefGoogle Scholar
  210. Schrettl M, Haas H (2011) Iron homeostasis-Achilles' heel of Aspergillus fumigatus? Curr Opin Microbiol 14:400–405PubMedPubMedCentralCrossRefGoogle Scholar
  211. Schrettl M, Bignell E, Kragl C, Sabiha Y, Loss O, Eisendle M, Wallner A, Arst HN Jr, Haynes K, Haas H (2007) Distinct roles for intra- and extracellular siderophores during Aspergillus fumigatus infection. PLoS Pathog 3:1195–1207Google Scholar
  212. Scott PM, Polonsky J, Merrien MA (1979) Configuration of the 3,12 double bond of roquefortine. J Agric Food Chem 27:201–202CrossRefGoogle Scholar
  213. Seto Y, Takahasi K, Matsuura H, Kogami Y, Yada H, Yoshihara T, Nabeta K (2007) Novel cyclic peptide, epichlicin, from the endophytic fungus, Epichloe typhina. Biosci Biotechnol Biochem 71:1470–1475PubMedCrossRefGoogle Scholar
  214. Shimokawa K, Mashima I, Asai A, Yamada K, Kita M, Uemura D (2006) Ternatin, a highly N-methylated cyclic heptapeptide that inhibits fat accumulation: structure and synthesis. Tetrahedron Lett 47:445–4448CrossRefGoogle Scholar
  215. Shiono Y, Tschuchinari M, Shimanuki K, Miyajima T, Murayama T, Koseki T, Laatsch H, Funakoshi T, Takanami K, Suzuki K (2007) Fusaristatins A and B, two new cyclic lipopeptides from an endophytic Fusarium sp. J Antibiot 60:309–316PubMedCrossRefGoogle Scholar
  216. Singh SB, Zink DL, Liesch JM, Mosley RT, Dombrowski AW, Bills GF, Darkin-Rattray SJ, Schmatz DM, Goetz MA (2002) Structure and chemistry of apicidins, a class of novel cyclic tetrapeptides without a terminal α-keto epoxide as inhibitors of histone deacetylase with potent antiprotozoal activities. J Org Chem 67:815–825PubMedCrossRefGoogle Scholar
  217. Singh SB, Ondeyka J, Harris G, Herath K, Zink D, Vicente F, Bills G, Collado J, Platas G, González del Val A, Martin J, Fernando Reyes F, Hao Wang H, Nielsen Kahn J, Galuska S, Giacobbe R, Abruzzo G, Roemer T, Xu D (2013) Isolation, structure, and biological activity of phaeofungin, a cyclic lipodepsipeptide from a Phaeosphaeria sp. using the genome-wide Candida albicans fitness test. J Nat Prod 76:334–345PubMedCrossRefGoogle Scholar
  218. Skrobek A, Butt TM (2005) Toxicity testing of destruxins and crude extracts from the insect-pathogenic fungus Metarhizium anisopliae. FEMS Microbiol Lett 251:23–28PubMedCrossRefGoogle Scholar
  219. Sterner O, Etzel W, Mayer A, Anke H (1997) Omphalotin, a new cyclic peptide with potent nematicidal activity from Omphalotus olearius. II. Isolation and structure determination. Nat Prod Lett 10:33–38CrossRefGoogle Scholar
  220. Stoppacher N, Neumann NKN, Burgstaller L, Zeilinger S, Degenkolb T, Brückner H, Schuhmacher R (2013) The comprehensive peptaibiotics database. Chem Biodivers 10:734–743PubMedCrossRefGoogle Scholar
  221. Sugui JA, Pardo J, Chang YC, Zarember KA, Nardone G, Galvez EM, Müllbacher A, Gallin JI, Simon MM, Kwon-Chung KJ (2007) Gliotoxin is a virulence factor of Aspergillus fumigatus: gliP deletion attenuates virulence in mice immunosuppressed with hydrocortisone. Eukaryot Cell 6:1562–1569PubMedPubMedCentralCrossRefGoogle Scholar
  222. Supothina S, Isaka M, Kirtikara K, Tanticharoen M, Thebtaranonth Y (2004) Enniatin production by the entomopathogenic fungus Verticillium hemipterigenum BCC 1449. J Antibiot 57:732–738PubMedCrossRefGoogle Scholar
  223. Takahashi C, Numata A, Matsumura E, Minoura K, Eto H, Shingu T, Ito T, Hasgawa T (1994) Leptosins I and J, cytotoxic substances produced by a Leptosphaeria sp. physico-chemical properties and structures. J Antibiot 47:1242–1249PubMedCrossRefGoogle Scholar
  224. Tan NH, Zhou J (2006) Plant cyclopeptides. Chem Rev 106:840–895PubMedCrossRefGoogle Scholar
  225. Tan LT, Cheng XC, Jensen PR, Fenical W (2003) Scytalidamides A and B, new cytotoxic cyclic heptapeptides from a marine fungus of the genus Scytalidium. J Org Chem 68:8767–8773PubMedCrossRefGoogle Scholar
  226. Tan RX, Jensen PR, Williams PG, Fenical W (2004) Isolation and structure assignments of Rostratins A-D, cytotoxic disulfides produced by the marine-derived fungus Exserohilum rostratum. J Nat Prod 67:1374–1382PubMedCrossRefGoogle Scholar
  227. Tan QW, Gao FL, Wang FR Chen QJ (2015) Anti-TMV activity of malformin A1, a cyclic pentapeptide produced by an endophytic fungus Aspergillus tubingensis FJBJ11. Int J Mol Sci 16:5750–5761Google Scholar
  228. Tani H, Fujii Y, Nakajima H (2001) Chlamydocin analogues from the soil fungus Peniophora sp.: structures and plant growth-retardant activity. Phytochemistry 58:305–310PubMedCrossRefGoogle Scholar
  229. Taunton J, Hassig CA, Schreiber SL (1996) A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272:408–411PubMedCrossRefGoogle Scholar
  230. Tobiasen C, Aahman J, Ravnholt KS, Bjerrum MJ, Grell MN, Giese H (2007) Nonribosomal peptide synthetase (NPS) genes in Fusarium graminearum, F. culmorum and F. pseudograminearium and identification of NPS2 as the producer of ferricrocin. Curr Genet 51:43–58PubMedCrossRefGoogle Scholar
  231. Traber R, Dreyfuss MM (1996) Occurrence of cyclosporins and cyclosporin-like peptolides in fungi. J Ind Microbiol 17:397–401CrossRefGoogle Scholar
  232. Tsukui T, Umemura M, Kumagai T, Terai G, Machida M, Nagano N, Asai K (2015) Ustiloxins, fungal cyclic peptides, are ribosomally synthesized in Ustilaginoidea virens. Bioinformatics 31:981–985PubMedCrossRefGoogle Scholar
  233. Turner WB, Aldridge DC (1983) Diketopiperazines and related compounds. In: Fungal metabolites II. Academic, London, pp 405–423Google Scholar
  234. Ueno T, Nakashima T, Hayashi Y, Fukami H (1975) Structures of AM-toxin I and II, host-specific phytotoxic metabolites produced by Alternaria mali. Agric Biol Chem 39:1115–1122Google Scholar
  235. Umeyama A, Takahashi K, Grudniewska A, Shimizu M, Hayashi S, Kato M, Okamoto Y, Suenaga M, Ban S, Kumada T, Ishiyama A, Iwatsuki M, Otoguro K, Omura S, Hashimoto T (2014) In vitro antitrypanosomal activity of the cyclodepsipeptides, cardinalisamides A-C, from the insect pathogenic fungus Cordyceps cardinalis NBRC 103832. J Antibiot 67:163–166PubMedCrossRefGoogle Scholar
  236. Ványolós A, Dékány M, Kovács B, Krámos B, Bérdi P, Zupkó I, Hohmann J, Béni Z (2016) Gymnopeptides A and B, cyclic octadecapeptides from the mushroom Gymnopus fusipes. Org Lett 18:2688–2691PubMedCrossRefGoogle Scholar
  237. Verekar SA, Mishra PD, Sreekumar ES, Deshmukh SK, Fiebig HH, Kelter G, Maier A (2014) Anticancer activity of new depsipeptide compound isolated from an endophytic fungus. J Antibiot 67:697–701Google Scholar
  238. Vey A, Matha V, Dumas C (2002) Effects of the peptide mycotoxin destruxin E on insect haemocytes and on dynamics and efficiency of the multicellular immune reaction. J Invertebr Pathol 80:177–187PubMedCrossRefGoogle Scholar
  239. Vijayakumar EKS, Roy K, Chatterjee S, Deshmukh SK, Ganguli BN, Fehlhaber HW, Kogler H (1996) Arthrichitin. A new cell wall active metabolite from Arthrinium phaeospermum. J Org Chem 61:6591–6593PubMedCrossRefGoogle Scholar
  240. von Bargen KW, Niehaus EM, Bergander K, Brun R, Tudzynski B, Humpf H-U (2013) Structure elucidation and antimalarial activity of apicidin F: an apicidin-like compound produced by Fusarium fujikuroi. J Nat Prod 76:136–2140Google Scholar
  241. von Samson-Himmelstjerna G, Harder A, Sangster NC, Coles GC (2005) Efficacy of two cyclooctadepsipeptides, PF022A and emodepside, against anthelmintic-resistant nematodes in sheep and cattle. Parasitology 130:343–347CrossRefGoogle Scholar
  242. Vongvanich N, Kittakoop P, Isaka M, Trakulnaleamsai S, Vimuttipong S, Tanticharoen M, Thebtaranonth Y (2002) Hirsutellide A, a new antimycobacterial cyclohexadepsipeptide from the entomopathogenic fungus Hirsutella kobayasii. J Nat Prod 65:1346–1348PubMedCrossRefGoogle Scholar
  243. Walton JD, Hallen-Adams HE, Luo H (2010) Ribosomal biosynthesis of the cyclic peptide toxins of Amanita mushrooms. Biopolymers 94:659–664PubMedPubMedCentralCrossRefGoogle Scholar
  244. Walton JD, Luo H, Hallen-Adams H (2012) Ribosomally encoded cyclic toxins from mushrooms. Methods Enzymol 516:63–77PubMedCrossRefGoogle Scholar
  245. Wang S-Y, Xu Z-L, Wang H, Li C-R, Fu L-W, Pang J-Y, Li J, She Z-G, Lin Y-C (2012) Total synthesis, absolute configuration, and biological activity of xyloallenoide A. Helv Chim Acta 95:973–982CrossRefGoogle Scholar
  246. Wang JP, Lin WH, Wray V, Lai DW, Proksch P (2013) Induced production of despsipeptides by co-culturing Fusarium tricinctum and Fusarium begoniae. Tetrahedron Lett 54:2492–2496CrossRefGoogle Scholar
  247. Wang WX, Kusari S, Sezgin S, Lamshoeft M, Kusari P, Kayser O, Spiteller M (2015) Hexacyclopeptides secreted by an endophytic fungus Fusarium solani N06 act as crosstalk molecules in Narcissus tazetta. Appl Microbiol Biotechnol 99:7651–7662PubMedCrossRefGoogle Scholar
  248. Waring P, Beaver J (1996) Gliotoxin and related epipolythiodioxopiperazines. Gen Pharmacol 27:1311–1316PubMedCrossRefGoogle Scholar
  249. Waring P, Eichner RD, Müllbacher A (1988) The chemistry and biology of the immunomodulating agent gliotoxin and related epipolythiodioxopiperazines. Med Res Rev 8:499–524PubMedCrossRefGoogle Scholar
  250. Weber D, Erosa G, Sterner O, Anke T (2006) Cyclindrocyclin A, a new cytotoxic cyclopeptide from Cylindrocarpon sp. J Antibiot 59:495–499PubMedCrossRefGoogle Scholar
  251. Wei W, Jiang N, Mei YN, Chu YL, Ge HM, Song YC, Ng SW, Tan RX (2014) An antibacterial metabolite from Lasiodiplodia pseudotheobromae F2. Phytochemistry 100:103–109PubMedCrossRefGoogle Scholar
  252. Welker M, von Döhren H (2006) Cyanobacterial peptides – nature’s own combinatorial biosynthesis. FEMS Microbiol Rev 30:530–563PubMedCrossRefGoogle Scholar
  253. Welzel K, Eisfeld K, Antelo L, Anke T, Anke H (2005) Characterization of the ferrichrome A biosynthetic gene cluster in the homobasidiomycete Omphalotus olearius. FEMS Microbiol Lett 249:157–163PubMedCrossRefGoogle Scholar
  254. Winkelmann W, Drechsel H (1997) Microbial siderophores. In: Kleinkauf H, von Döhren H (eds) Products of secondary metabolism. (Biotechnology, 7). VCH, Weinheim, pp 199–246Google Scholar
  255. Winterberg B, Uhlmann S, Linne U, Lessing F, Marahiel M, Eichhorn H, Kahmann R, Schirawski J (2010) Elucidation of the complete ferrichrome A biosynthetic pathway in Ustilago maydis. Mol Microbiol 75:1260–1271Google Scholar
  256. Wolstenholme WA, Vining LC (1966) Determination of amino acid sequences in oligopeptides by mass spectrometry VIII. The structure of isariin. Tetrahedron Lett 7:2785–2791CrossRefGoogle Scholar
  257. Wu W, Dai H, Bao L, Ren B, Lu J, Lu Y, Guo L, Zhang L, Liu H (2011) Isolation and structural elucidation of proline-containing cyclopentapeptides from an endolichenic Xylaria sp. J Nat Prod 74:1303–1308PubMedCrossRefGoogle Scholar
  258. Xu Y, Wijeratne EMK, Espinosa-Artiles P, Gunatilaka AAL, Monar I (2009) Combinatorial mutasynthesis of scrambled beauvericins, cyclooligomer depsipeptide cell migration inhibitors from Beauveria bassiana. Chembiochem 10:345–354PubMedCrossRefGoogle Scholar
  259. Xu J, Zhao S, Yang X (2014) A new cyclopeptide metabolite of marine gut fungus from Ligia oceanica. Nat Prod Res 28:994–997PubMedCrossRefGoogle Scholar
  260. Yano T, Aoyagi A, Kozuma S, Kawamura Y, Tanaka I, Suzuki Y, Takamatsu Y, Takatsu T, Inukai M (2007) Pleofungins, novel inositol phosphorylceramide synthase inhibitors, from Phoma sp. SANK 13899. J Antibiot 60:136–142PubMedCrossRefGoogle Scholar
  261. Ye P, Shen L, Jiang W, Ye Y, Chen C-TA, Wu X, Wang K, Wu B (2014) Zn-Driven discovery of a hydrothermal vent fungal metabolite clavatustide C, and an experimental study of the anti-cancer mechanism of clavatustide B. Mar Drugs 12:3203–3217PubMedPubMedCentralCrossRefGoogle Scholar
  262. Yin WQ, Zou JM, She ZG, Vrijmoed LLP, Jones EBG, Lin YC (2005) Two cyclic peptides produced by the endophytic fungus 2221 from Castaniopsis fissa on the South China sea cost. Chin Chem Lett 16:219–222Google Scholar
  263. Yoshioka H, Nakatsu K, Sato M, Tatsuno T (1973) The molecular structure of cyclochlorotine, a toxic chlorine-containing peptapeptide. Chem Lett (12):1319–1322Google Scholar
  264. Zhang P, Chen Z, Hu J, Wei B, Zhang Z, Hu W (2005) Production and characterization of amanitin toxins from a pure culture of Amanita exitialis. FEMS Microbiol Lett 252:223–228PubMedCrossRefGoogle Scholar
  265. Zhao M, Lin H-C, Tang Y (2016) Biosynthesis of the alpha-nitro-containing cyclic tripeptide psychrophilin. J Antibiot 69:571–573PubMedPubMedCentralCrossRefGoogle Scholar
  266. Zheng CJ, Oark SH, Koshino H, Kim YH, Kim WG (2007) Verticillin G, a new antibacterial compound from Bionectria byssicola. J Antibiot 60:61–64PubMedCrossRefGoogle Scholar
  267. Zheng J, Zhu H, Hong K, Wang X, Peng X, Zhu W (2009) Novel cyclic hexapeptides from marine-derived fungus Aspergillus sclerotiorum PT06-1. Org Lett 11:5262–5265PubMedCrossRefGoogle Scholar
  268. Zheng J, Xu Z, Wang Y, Hong K, Liu P, Zhu W (2010) Cyclic tripeptides from the halotolerant fungus Aspergillus sclerotiorum PT06-1. J Nat Prod 73:1133–1137PubMedCrossRefGoogle Scholar
  269. Zhou ZF, Yang XH, Liu HL, Gu YC, Ye BP, Guo YW (2014) A new cyclic peptide and a new steroid from the fungus Penicillium sp. GD6 isolated from the mangrove Bruguiera gymnorrhiza. Helv Chim Acta 97:1564–1570CrossRefGoogle Scholar
  270. Zhuang Y, Teng X, Wang Y, Liu P, Wang H, Li J, Li G, Zhu W (2011) Cyclopeptides and polyketides from coral-associated fungus, Aspergillus versicolor LCJ-5-4. Tetrahedron 67:7085–7089CrossRefGoogle Scholar
  271. Zimmermann G (2007a) Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocont. Sci Technol 17:553–596Google Scholar
  272. Zimmermann G (2007b) Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci Technol 17:879–920CrossRefGoogle Scholar
  273. Zou X, Niu S, Ren J, Li E, Liu X, Che Y (2011) Verrucamides A-D, antibacterial cyclopeptides from Myrothecium verrucaria. J Nat Prod 74:1111–1116PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute for Biotechnology and Drug Research, IBWF gGmbHKaiserslauternGermany
  2. 2.University of Goettingen, Institute of Organic and Biomolecular ChemistryGoettingenGermany

Personalised recommendations