Approaching Interactions in Agent-Based Modelling with an Affordance Perspective

  • Franziska Klügl
  • Sabine Timpf
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10642)


Over the last years, the affordance concept has attracted more and more attention in agent-based simulation. Due to its grounding in cognitive science, we assume that it may help a modeller to capture possible interactions in the modelling phase as it can be used to clearly state under which circumstances an agent might execute a particular action with a particular environmental entity.

In this discussion paper we clarify the concept of affordance and introduce a light-weight formalization of the notions in a way appropriate for agent-based simulation modelling. We debate its suitability for capturing interaction compared to other approaches.


  1. 1.
    Afoutni, Z., Courdier, R., Guerrin, F.: A multiagent system to model human action based on the concept of affordance. In: 4th International Conference on Simulation and Modeling Methodologies, Technologies And Applications (SIMULTECH), 8 p. (2014)Google Scholar
  2. 2.
    Amblard, F., Bouadjio-Boulic, A., Gutiérrez, C.S., Gaudou, B.: Which models are used in social simulation to generate social networks? a review of 17 years of publications in JASSS. In: 2015 Winter Simulation Conference (WSC), pp. 4021–4032 (2015)Google Scholar
  3. 3.
    Awaad, I., Kretschmar, G., Hertzberg, J.: Finding ways to get the job done: an affordance-based approach. In: 24th International Conference on Automated Planning and Scheduling (ICAPS 2014), Portsmouth, USA, pp. 499–503, June 2014Google Scholar
  4. 4.
    Bauer, B., Müller, J.P., Odell, J.: Agent UML: a formalism for specifying multiagent software systems. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000. LNCS, vol. 1957, pp. 91–103. Springer, Heidelberg (2001). CrossRefGoogle Scholar
  5. 5.
    Bauer, B., Odell, J.: Uml 2.0 and agents: how to build agent-based systems with the new UML standard. Eng. Appl. Artif. Intell. 18(2), 141–157 (2005)CrossRefGoogle Scholar
  6. 6.
    Bersini, H.: UML for ABM. J. Artif. Soc. Soc. Simul. 15(1), 9 (2012)CrossRefGoogle Scholar
  7. 7.
    Chella, A., Cossentino, M., Faso, U.L.: Applying UML use case diagrams to agents. In: Proceedings of AI*IA 2000 Conference, pp. 13–15 (2000)Google Scholar
  8. 8.
    Ferber, J.: Multi-Agent System: An Introduction to Distributed Artificial Intelligence. Addison Wesley Longman, Harlow (1999)Google Scholar
  9. 9.
    Ferber, J., Gutknecht, O.: A meta-model for the analysis and design of organizations in multi-agent systems. In: Proceedings of the 3rd International Conference on Multi Agent Systems (ICMAS 1998), pp. 128–135. IEEE, Washington, DC (1998)Google Scholar
  10. 10.
    Ferber, J., Müller, J.-P.: Influences and reactions: a model of situated multiagent systems. In: Proceedings of the ICMAS 1996. AAAI Press (1996)Google Scholar
  11. 11.
    Ferdinandus, G.R., Peeters, M., van den Bosch, K., Meyer, J.-J.C.: Automated scenario generation - coupling planning techniques with smart objects. In: Proceedings of the 5th International Conference on Computer Supported Education, Aachen, Germany, pp. 76–81 (2013)Google Scholar
  12. 12.
    Ghorbani, A., Bots, P., Dignum, V., Dijkema, G.: MAIA: a framework for developing agent-based social simulations. J. Artif. Soc. Soc. Simul. 16(2), 9 (2013)CrossRefGoogle Scholar
  13. 13.
    Gibson, J.J.: The Ecological Approach to Visual Perception. Houghton Mifflin, Boston (1979)Google Scholar
  14. 14.
    Hübner, J., Sichman, J.F., Boissier, B.: Developing organised multi-agent systems using the MOISE + model: programming issues at the system and agent levels. Int. J. Agent-Oriented Softw. Eng. 1(3/4), 370–395 (2007)CrossRefGoogle Scholar
  15. 15.
    Janowicz, K., Scheider, S., Pehle, T., Hart, G.: Geospatial semantics and linked spatiotemporal data -past, present, and future. Semantic Web 3(4), 321–332 (2012)Google Scholar
  16. 16.
    Jonietz, D.: From Space to Place - A Computational Model of Functional Place. Thesis, University of Augsburg, Geographical Information Science (2016)Google Scholar
  17. 17.
    Jonietz, D., Timpf, S.: An affordance-based simulation framework for assessing spatial suitability. In: Tenbrink, T., Stell, J., Galton, A., Wood, Z. (eds.) COSIT 2013. LNCS, vol. 8116, pp. 169–184. Springer, Cham (2013). CrossRefGoogle Scholar
  18. 18.
    Jonietz, D., Timpf, S.: On the relevance of Gibson’s affordance concept for geographical information science. Cogn. Process. Int. Quaterly Cogn. Sci. 16(suppl. 1), 265–269 (2015)Google Scholar
  19. 19.
    Joo, J., Kim, N., Wysk, R.A., Rothrock, L., Son, Y.-J., Oh, Y.-G., Lee, S.: Agent-based simulation of affordance-based human behaviors in emergency evacuation. Simul. Model. Pract. Theory 13, 99–115 (2013)CrossRefGoogle Scholar
  20. 20.
    Jordan, T., Raubal, M., Gartrell, B., Egenhöfer, M.J.: An affordance-based model of place in GIS. In: Poiker, T., Chrisman, N. (eds.) Proceedings of 8th International Symposium on Spatial Data Handling, Vancouver, CA, pp. 98–109 (1998)Google Scholar
  21. 21.
    Kapadia, M., Singh, S., Hewlett, W., Faloutsos, P.: Egocentric affordance fields in pedestrian steering. In: Proceedings of the 2009 symposium on Interactive 3D graphics and games (I3D 2009), pp. 215–223. ACM, New York (2009)Google Scholar
  22. 22.
    Klügl, F.: Using the affordance concept for model design in agent-based simulation. Ann. Math. Artif. Intell. 78, 21–44 (2016)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Ksontini, F., Mandiau, R., Guessoum, Z., Espié, S.: Affordance-based agent model for traffic simulation. J. Auton. Agents Multiagent Syst. 29(5), 821–849 (2015)CrossRefGoogle Scholar
  24. 24.
    Kubera, Y., Mathieu, P., Picault, S.: Everything can be agent! In: van der Hoek, W., Kaminka, G., Lespérance, Y., Luck, M., Sen, S. (eds.) Proceedings of 9th International Joint Conference on Autonomous Agents and Multi-Agent Systems, AAMAS 2010, Toronto, Canada, p. 1547f (2010)Google Scholar
  25. 25.
    Kubera, Y., Mathieu, P., Picault, S.: IODA: an interaction-oriented approach for multi-agent based simulations. Auton. Agent. Multi-Agent Syst. 23(3), 303–343 (2011)CrossRefGoogle Scholar
  26. 26.
    Kuhn, W.: An image-schematic account of spatial categories. In: Winter, S., Duckham, M., Kulik, L., Kuipers, B. (eds.) COSIT 2007. LNCS, vol. 4736, pp. 152–168. Springer, Heidelberg (2007). CrossRefGoogle Scholar
  27. 27.
    Norman, D.A.: The Invisible Computer. MIT Press, Cambridge (1999)Google Scholar
  28. 28.
    Paris, S., Donikian, S.: Activity-driven populace: a cognitive approach to crowd simulation. IEEE Comput. Graphics Appl. 29(4), 34–43 (2009)CrossRefGoogle Scholar
  29. 29.
    Raubal, M.: Ontology and epistemology for agent-based wayfinding simulation. Int. J. Geogr. Inf. Sci. 15, 653–665 (2001)CrossRefGoogle Scholar
  30. 30.
    Raubal, M., Moratz, R.: A functional model for affordance-based agents. In: Rome, E., Hertzberg, J., Dorffner, G. (eds.) Towards Affordance-Based Robot Control. LNCS (LNAI), vol. 4760, pp. 91–105. Springer, Heidelberg (2008). CrossRefGoogle Scholar
  31. 31.
    Şahin, E., Çakmak, M., Doğar, M.R., Uğur, E., Üçoluk, G.: To afford or not to afford: a new formalism of affordances towards affordance-based robot control. Adapt. Behav. 15(4), 447–472 (2007)CrossRefGoogle Scholar
  32. 32.
    Stoffregen, T.: Affordances as properties of the animal environment system. Ecol. Psychol. 15(2), 115–134 (2003)CrossRefGoogle Scholar
  33. 33.
    Timpf, S.: Simulating place selection in urban public parks. In: International Workshop on Social Space and Geographic Space, SGS 2007, Melbourne (2007)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Natural Science and TechnologyÖrebro UniversityÖrebroSweden
  2. 2.Institute for GeographyAugsburg UniversityAugsburgGermany

Personalised recommendations