Computers That Negotiate on Our Behalf: Major Challenges for Self-sufficient, Self-directed, and Interdependent Negotiating Agents

  • Tim BaarslagEmail author
  • Michael Kaisers
  • Enrico H. Gerding
  • Catholijn M. Jonker
  • Jonathan Gratch
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10643)


Computers that negotiate on our behalf hold great promise for the future and will even become indispensable in emerging application domains such as the smart grid, autonomous driving, and the Internet of Things. Much research has thus been expended to create agents that are able to negotiate in an abundance of circumstances. However, up until now, truly autonomous negotiators have rarely been deployed in real-world applications. This paper sizes up current negotiating agents and explores a number of technological, societal and ethical challenges that autonomous negotiation systems are bringing about. The questions we address are: in what sense are these systems autonomous, what has been holding back their further proliferation, and is their spread something we should encourage? We relate the automated negotiation research agenda to dimensions of autonomy and distill three major themes that we believe will propel autonomous negotiation forward: accurate representation, long-term perspective, and user trust. We argue these orthogonal research directions need to be aligned and advanced in unison to sustain tangible progress in the field.



This research has received funding through the ERA-Net Smart Grids Plus project Grid-Friends, with support from the European Union’s Horizon 2020 research and innovation programme. This work is part of the Veni research programme with project number 639.021.751, which is financed by the Netherlands Organisation for Scientific Research (NWO).


  1. 1.
    Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 191–226. Springer, Boston (2015). CrossRefGoogle Scholar
  2. 2.
    Alam, M., Gerding, E.H., Rogers, A., Ramchurn, S.D.: A scalable interdependent multi-issue negotiation protocol for energy exchange. In: 24th International Joint Conference on AI (IJCAI), pp. 1098–1104 (2015)Google Scholar
  3. 3.
    Ali, M., Nelson, J., Shea, R., Freedman, M.J.: Blockstack: a global naming and storage system secured by blockchains. In: 2016 USENIX Annual Technical Conference, pp. 181–194. USENIX Association (2016)Google Scholar
  4. 4.
    Aydoğan, R., Baarslag, T., Hindriks, K.V., Jonker, C.M., Yolum, P.: Heuristics for using CP-nets in utility-based negotiation without knowing utilities. Knowl. Inf. Syst. 45(2), 357–388 (2015)CrossRefGoogle Scholar
  5. 5.
    Baarslag, T., Aydoğan, R., Hindriks, K.V., Fuijita, K., Ito, T., Jonker, C.M.: The automated negotiating agents competition, 2010-2015. AI Mag. 36(4), 115–118 (2015)CrossRefGoogle Scholar
  6. 6.
    Baarslag, T., Gerding, E.H.: Optimal incremental preference elicitation during negotiation. In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, pp. 3–9. AAAI Press (2015)Google Scholar
  7. 7.
    Baarslag, T., Kaisers, M.: The value of information in automated negotiation: a decision model for eliciting user preferences. In: Proceedings of the 16th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2017. IFAAMAS (2017)Google Scholar
  8. 8.
    Baarslag, T., Kaisers, M., Gerding, E.H., Jonker, C.M., Gratch, J.: When will negotiation agents be able to represent us? The challenges and opportunities for autonomous negotiators. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017 (2017)Google Scholar
  9. 9.
    Babcock, L., Laschever, S.: Women Don’t Ask: Negotiation and the Gender Divide. Princeton University Press, Princeton (2009)Google Scholar
  10. 10.
    Barry, B., Fulmer, I.S., Van Kleef, G.A.: I laughed, I cried, I settled: the role of emotion in negotiation. In: The Handbook of Negotiation and Culture, pp. 71–94 (2004)Google Scholar
  11. 11.
    Bazerman, M., Neale, M.: Nonrational escalation of commitment in negotiation. Eur. Manag. J. 10(2), 163–168 (1992)CrossRefGoogle Scholar
  12. 12.
    Boutilier, C.: A POMDP formulation of preference elicitation problems. In: Eighteenth National Conference on Artificial Intelligence, pp. 239–246. American Association for Artificial Intelligence, Menlo Park (2002)Google Scholar
  13. 13.
    Boutilier, C.: On the foundations of expected expected utility. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence, IJCAI 2003, pp. 285–290. Morgan Kaufmann Publishers Inc., San Francisco (2003)Google Scholar
  14. 14.
    Bradshaw, J.M., Feltovich, P.J., Jung, H., Kulkarni, S., Taysom, W., Uszok, A.: Dimensions of adjustable autonomy and mixed-initiative interaction. In: Nickles, M., Rovatsos, M., Weiss, G. (eds.) AUTONOMY 2003. LNCS (LNAI), vol. 2969, pp. 17–39. Springer, Heidelberg (2004). CrossRefGoogle Scholar
  15. 15.
    Cadilhac, A., Asher, N., Benamara, F., Lascarides, A.: Grounding strategic conversation: using negotiation dialogues to predict trades in a win-lose game. In: Proceedings of Empirical Methods in Natural Language Processing (EMNLP), pp. 357–368 (2013)Google Scholar
  16. 16.
    Chajewska, U., Koller, D., Parr, R.: Making rational decisions using adaptive utility elicitation. In: Proceedings of the Seventeenth National Conference on Artificial Intelligence, pp. 363–369 (2000)Google Scholar
  17. 17.
    Chu, W., Ghahramani, Z.: Preference learning with Gaussian processes. In: ICML, pp. 137–144 (2005)Google Scholar
  18. 18.
    Chugh, D., Bazerman, M.H., Banaji, M.R.: Bounded ethicality as a psychological barrier to recognizing conflicts of interest. In: Conflicts of Interest: Challenges and Solutions in Business, Law, Medicine, and Public Policy, pp. 74–95 (2005)Google Scholar
  19. 19.
    Coehoorn, R.M., Jennings, N.R.: Learning on opponent’s preferences to make effective multi-issue negotiation trade-offs. In: Proceedings of the 6th International Conference on Electronic Commerce, ICEC 2004, pp. 59–68. ACM, New York (2004)Google Scholar
  20. 20.
    Curhan, J.R., Elfenbein, H.A., Xu, H.: What do people value when they negotiate? Mapping the domain of subjective value in negotiation. J. Pers. Soc. Psychol. 91(3), 493 (2006)CrossRefGoogle Scholar
  21. 21.
    de Jonge, D., Sierra, C., Sabaté, J.G.: Negotiations over large agreement spaces. Ph.D. thesis (2015)Google Scholar
  22. 22.
    de Melo, C.M., Marsella, S., Gratch, J.: Do as I say, not as I do: challenges in delegating decisions to automated agents. In: Proceedings of the 2016 International Conference on Autonomous Agents and Multiagent Systems, pp. 949–956. IFAAMAS (2016)Google Scholar
  23. 23.
    de Vries, S., Vohra, R.V.: Combinatorial auctions: a survey. Inf. J. Comput. 15(3), 284–309 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Dehghani, M., Atran, S., Iliev, R., Sachdeva, S., Medin, D., Ginges, J.: Sacred values and conflict over Iran’s nuclear program. Judgment Decis. Making 5(7), 540 (2010)Google Scholar
  25. 25.
    Dimopoulos, Y., Moraitis, P.: Advances in argumentation based negotiation. In: Negotiation and Argumentation in Multi-agent Systems: Fundamentals, Theories, Systems and Applications, pp. 82–125 (2014)Google Scholar
  26. 26.
    Eisenberg, T., Lanvers, C.: What is the settlement rate and why should we care? J. Empirical Legal Stud. 6(1), 111–146 (2009)CrossRefGoogle Scholar
  27. 27.
    Fatima, S.S., Wooldridge, M., Jennings, N.R.: On efficient procedures for multi-issue negotiation. In: Fasli, M., Shehory, O. (eds.) TADA/AMEC 2006. LNCS (LNAI), vol. 4452, pp. 31–45. Springer, Heidelberg (2007). CrossRefGoogle Scholar
  28. 28.
    Fehr, E., Schmidt, K.M.: The economics of fairness, reciprocity and altruism–experimental evidence and new theories. In: Handbook of the Economics of Giving, Altruism and Reciprocity, vol. 1, pp. 615–691 (2006)Google Scholar
  29. 29.
    Fong, T., Thorpe, C., Baur, C.: Collaborative control: a robot-centric model for vehicle teleoperation, vol. 1. Carnegie Mellon University, The Robotics Institute (2001)Google Scholar
  30. 30.
    Gelfand, M.J., Brett, J.M.: The Handbook of Negotiation and Culture. Stanford University Press, Stanford (2004)Google Scholar
  31. 31.
    Gratch, J., Nazari, Z., Johnson, E.: The misrepresentation game: how to win at negotiation while seeming like a nice guy. In: Proceedings of the 2016 International Conference on Autonomous Agents and Multiagent Systems, pp. 728–737. IFAAMAS (2016)Google Scholar
  32. 32.
    Hadfi, R., Ito, T.: Modeling complex nonlinear utility spaces using utility hyper-graphs. In: Torra, V., Narukawa, Y., Endo, Y. (eds.) MDAI 2014. LNCS (LNAI), vol. 8825, pp. 14–25. Springer, Cham (2014). Google Scholar
  33. 33.
    Haim, G., Gal, Y.K., Gelfand, M., Kraus, S.: A cultural sensitive agent for human-computer negotiation. In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems - AAMAS 2012, Richland, SC, vol. 1, pp. 451–458. IFAAMAS (2012)Google Scholar
  34. 34.
    Hall, R.L.: Measuring legislative influence. Legislative Stud. Q. 17, 205–231 (1992)CrossRefGoogle Scholar
  35. 35.
    Harris, K.L.: Content analysis in negotiation research: a review and guide. Behav. Res. Meth. Instrum. Comput. 28(3), 458–467 (1996)CrossRefGoogle Scholar
  36. 36.
    Hernandez-Leal, P., Zhan, Y., Taylor, M.E., Enrique Sucar, L., de Cote, E.M.: An exploration strategy for non-stationary opponents. Auton. Agents Multi Agent Syst. 31(5), 971–1002 (2017)CrossRefGoogle Scholar
  37. 37.
    Hindriks, K., Jonker, C., Tykhonov, D.: Avoiding approximation errors in multi-issue negotiation with issue dependencies. In: Proceedings of the 1st International Workshop on Agent-based Complex Automated Negotiations (ACAN 2008), pp. 1347–1352 (2008)Google Scholar
  38. 38.
    Hinz, O., Hann, I.-H., Spann, M.: Price discrimination in e-commerce? An examination of dynamic pricing in name-your-own price markets. MIS Q. 35(1), 81–98 (2011)CrossRefGoogle Scholar
  39. 39.
    Hu, W., Bolivar, A.: Online auctions efficiency: a survey of eBay auctions. In: WWW, pp. 925–934 (2008)Google Scholar
  40. 40.
    Hunter, A.: Modelling the persuadee in asymmetric argumentation dialogues for persuasion. In: Proceedings of the 24th International Conference on Artificial Intelligence, IJCAI 2015, pp. 3055–3061. AAAI Press (2015)Google Scholar
  41. 41.
    Ito, T., Klein, M., Hattori, H.: A multi-issue negotiation protocol among agents with nonlinear utility functions. Multiagent Grid Syst. 4(1), 67–83 (2008)CrossRefzbMATHGoogle Scholar
  42. 42.
    Jennings, N.R., Faratin, P., Lomuscio, A.R., Parsons, S., Wooldridge, M.J., Sierra, C.: Automated negotiation: prospects, methods and challenges. Group Decis. Negot. 10(2), 199–215 (2001)CrossRefGoogle Scholar
  43. 43.
    Johnson, M., Bradshaw, J.M., Feltovich, P.J., Jonker, C., van Riemsdijk, B., Sierhuis, M.: Autonomy and interdependence in human-agent-robot teams. IEEE Intell. Syst. 27(2), 43–51 (2012)CrossRefGoogle Scholar
  44. 44.
    Johnson, M., Bradshaw, J.M., Feltovich, P.J., Jonker, C.M., van Riemsdijk, B., Sierhuis, M.: The fundamental principle of coactive design: interdependence must shape autonomy. In: De Vos, M., Fornara, N., Pitt, J.V., Vouros, G. (eds.) COIN 2010. LNCS (LNAI), vol. 6541, pp. 172–191. Springer, Heidelberg (2011). CrossRefGoogle Scholar
  45. 45.
    Kersten, G.E., Lo, G.: Negotiation support systems and software agents in e-business negotiations. In: The First International Conference on Electronic Business, Hong Kong, pp. 19–21, December 2001Google Scholar
  46. 46.
    Kingsley, D.C.: Preference uncertainty, preference refinement and paired comparison choice experiments. University of Colorado (2006)Google Scholar
  47. 47.
    Ladenburg, J.: Dynamic properties of the preferences for renewable energy sources a wind power experience-based approach. Energy 76, 542–551 (2014)CrossRefGoogle Scholar
  48. 48.
    Li, L., Zheng, L., Yang, F., Li, T.: Modeling and broadening temporal user interest in personalized news recommendation. Expert Syst. Appl. 41(7), 3168–3177 (2014)CrossRefGoogle Scholar
  49. 49.
    Lin, R., Kraus, S., Baarslag, T., Tykhonov, D., Hindriks, K.V., Jonker, C.M.: Genius: an integrated environment for supporting the design of generic automated negotiators. Comput. Intell. 30(1), 48–70 (2014)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Lopez-Carmona, M.A., Marsa-Maestre, I., Klein, M., Ito, T.: Addressing stability issues in mediated complex contract negotiations for constraint-based, non-monotonic utility spaces. Auton. Agents Multi Agent Syst. 24(3), 485–535 (2012)CrossRefGoogle Scholar
  51. 51.
    Luck, M., D’Inverno, M., Munroe, S.: Autonomy: Variable and Generative, pp. 11–28. Springer, Boston (2003)Google Scholar
  52. 52.
    Marsa-Maestre, I., Klein, M., Jonker, C.M., Aydoğan, R.: From problems to protocols: towards a negotiation handbook. Decis. Support Syst. 60, 39–54 (2014)CrossRefGoogle Scholar
  53. 53.
    Mell, J., Lucas, G., Gratch, J.: An effective conversation tactic for creating value over repeated negotiations. In: Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2015, Richland, SC, pp. 1567–1576. IFAAMAS (2015)Google Scholar
  54. 54.
    Narayanan, V., Jennings, N.: Learning to negotiate optimally in non-stationary environments. In: Cooperative Information Agents X, pp. 288–300 (2006)Google Scholar
  55. 55.
    Neuberger, J., Ubel, P.A.: Finding a place for public preferences in liver allocation decisions. Transplantation 70(10), 1411–1413 (2000)CrossRefGoogle Scholar
  56. 56.
    Norman, D.A.: The ‘problem’ with automation: inappropriate feedback and interaction, not ‘over-automation’. Philos. Trans. R. Soc. Lond. B Biol. Sci. 327(1241), 585–593 (1990)CrossRefGoogle Scholar
  57. 57.
    Perera, C., Wakenshaw, S.Y.L., Baarslag, T., Haddadi, H., Bandara, A.K., Mortier, R., Crabtree, A., Ng, I.C.L., McAuley, D., Crowcroft, J.: Valorising the IoT databox: creating value for everyone. Trans. Emerg. Telecommun. Technol. 28(1), 1–17 (2017)Google Scholar
  58. 58.
    Radu, S.: A negotiation framework with strategies based on agent preferences. In: 2017 21st International Conference on Control Systems and Computer Science (CSCS), pp. 529–535, May 2017Google Scholar
  59. 59.
    Ramchurn, S.D., Vytelingum, P., Rogers, A., Jennings, N.R.: Putting the ‘smarts’ into the smart grid: a grand challenge for artificial intelligence. Commun. ACM 55(4), 86–97 (2012)CrossRefGoogle Scholar
  60. 60.
    Roijers, D.M., Vamplew, P., Whiteson, S., Dazeley, R.: A survey of multi-objective sequential decision-making. J. Artif. Intell. Res. 48, 67–113 (2013)MathSciNetzbMATHGoogle Scholar
  61. 61.
    Rosenfeld, A., Zuckerman, I., Segal-Halevi, E., Drein, O., Kraus, S.: Negochat: a chat-based negotiation agent. In: Proceedings of the 2014 International Conference on Autonomous Agents and Multi-Agent Systems, AAMAS 2014, Richland, SC, pp. 525–532. IFAAMAS (2014)Google Scholar
  62. 62.
    Sanders, E.B.-N., Stappers, P.J.: Co-creation and the new landscapes of design. Co-design 4(1), 5–18 (2008)Google Scholar
  63. 63.
    Sebenius, J.K.: Negotiation analysis: a characterization and review. Manag. Sci. 38(1), 18–38 (1992)CrossRefzbMATHGoogle Scholar
  64. 64.
    Shafie-khah, M., Fitiwi, D.Z., Catalão, J.P.S., Heydarian-Forushani, E., Golshan, M.E.H.: Simultaneous participation of demand response aggregators in ancillary services and demand response exchange markets. In: 2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D), pp. 1–5. IEEE, May 2016Google Scholar
  65. 65.
    Simonsen, J., Robertson, T.: Routledge International Handbook of Participatory Design. Routledge, Abingdon (2012)Google Scholar
  66. 66.
    Smith, R.G.: The contract net protocol: high-level communication and control in a distributed problem solver. IEEE Trans. Comput. 29(12), 1104–1113 (1980)CrossRefGoogle Scholar
  67. 67.
    Sycara, K.P.: Arguments of persuasion in labour mediation. In: Proceedings of the 9th International Joint Conference on Artificial Intelligence, San Francisco, CA, USA, vol. 1, pp. 294–296 (1985)Google Scholar
  68. 68.
    Torfing, J., Guy Peters, B., Pierre, J., Sørensen, E.: Interactive governance: advancing the paradigm. Publ. Adm. 91(4), 1071–1082 (2013)CrossRefGoogle Scholar
  69. 69.
    Tsymbal, A.: The problem of concept drift: definitions and related work. Technical report, Trinity College Dublin, Department of Computer Science (2004)Google Scholar
  70. 70.
    Tversky, A., Kahneman, D.: Loss aversion in riskless choice: a reference-dependent model. Q. J. Econ. 106(4), 1039–1061 (1991)CrossRefGoogle Scholar
  71. 71.
    Visintainer, F., Altomare, L., Toffetti, A., Kovacs, A., Amditis, A.: Towards manoeuver negotiation: Autonet2030 project from a car maker perspective. Transp. Res. Procedia 14, 2237–2244 (2016)CrossRefGoogle Scholar
  72. 72.
    Von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior, Commemorative edn. (1 May 2007). Princeton University Press, Princeton (1953)Google Scholar
  73. 73.
    Welsh, N.A.: Perceptions of fairness in negotiation. Marq. L. Rev. 87, 753 (2003)Google Scholar
  74. 74.
    Worthy, B.: Brexit and open government in the UK. Open Government Partnership (2016)Google Scholar
  75. 75.
    Yang, R., Kiekintveld, C., Ordonez, F., Tambe, M., John, R.: Improving resource allocation strategies against human adversaries in security games: an extended study. Artif. Intell. 195, 440–469 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  76. 76.
    Peyton Young, H.: Negotiation Analysis. University of Michigan Press, Ann Arbor (1991)Google Scholar
  77. 77.
    Zhan, J., Luo, X., Feng, C., He, M.: A multi-demand negotiation model based on fuzzy rules elicited via psychological experiments. Appl. Soft Comput. (2017, in press)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Tim Baarslag
    • 1
    Email author
  • Michael Kaisers
    • 1
  • Enrico H. Gerding
    • 2
  • Catholijn M. Jonker
    • 3
    • 4
  • Jonathan Gratch
    • 5
  1. 1.Intelligent and Autonomous Systems GroupCentrum Wiskunde & InformaticaAmsterdamThe Netherlands
  2. 2.Agents, Interaction and Complexity GroupUniversity of SouthamptonSouthamptonUK
  3. 3.Interactive Intelligence GroupDelft University of TechnologyDelftThe Netherlands
  4. 4.LIACSLeiden UniversityLeidenThe Netherlands
  5. 5.Institute for Creative TechnologiesUniversity of Southern CaliforniaPlaya VistaUSA

Personalised recommendations