Advertisement

Yasol: An Open Source Solver for Quantified Mixed Integer Programs

  • Thorsten Ederer
  • Michael HartischEmail author
  • Ulf Lorenz
  • Thomas Opfer
  • Jan Wolf
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10664)

Abstract

Quantified mixed integer linear programs (QMIPs) are mixed integer linear programs (MIPs) with variables being either existentially or universally quantified. They can be interpreted as two-person zero-sum games between an existential and a universal player on the one side, or multistage optimization problems under uncertainty on the other side. Solutions of QMIPs are so-called winning strategies for the existential player that specify how to react on moves—certain fixations of universally quantified variables—of the universal player to certainly win the game. In order to solve the QMIP optimization problem, where the task is to find an especially attractive winning strategy, we examine the problem’s hybrid nature and present the open source solver Yasol that combines linear programming techniques with solution techniques from game-tree search.

References

  1. 1.
    Achterberg, T.: Constraint integer programming. PhD thesis, Berlin (2007)Google Scholar
  2. 2.
    Bellmann, R.: Dynamic Programming. Princeton University Press (1957)Google Scholar
  3. 3.
    Ben-Tal, A., Ghaoui, L.E., Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton (2009)Google Scholar
  4. 4.
    Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, Springer Series in Operations Research and Financial Engineering (1997)zbMATHGoogle Scholar
  5. 5.
    Ederer, T., Lorenz, U., Martin, A., Wolf, J.: Quantified linear programs: a computational study. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 203–214. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23719-5_18 CrossRefGoogle Scholar
  6. 6.
    Ederer, T., Lorenz, U., Opfer, T., Wolf, J.: Multistage optimization with the help of quantified linear programming. In: Lübbecke, M., Koster, A., Letmathe, P., Madlener, R., Peis, B., Walther, G. (eds.) Operations Research Proceedings 2014. ORP, pp. 369–375. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-28697-6_52 CrossRefGoogle Scholar
  7. 7.
    Ederer, T., Lorenz, U., Opfer, T., Wolf, J.: Modeling games with the help of quantified integer linear programs. In: Herik, H.J., Plaat, A. (eds.) ACG 2011. LNCS, vol. 7168, pp. 270–281. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31866-5_23 CrossRefGoogle Scholar
  8. 8.
    Feldmann, R.: Game tree search on massively parallel systems. Ph.D. thesis, University of Paderborn (1993)Google Scholar
  9. 9.
    Hartisch, M., Ederer, T., Lorenz, U., Wolf, J.: Quantified integer programs with polyhedral uncertainty set. In: Plaat, Aske, Kosters, Walter, van den Herik, Jaap (eds.) CG 2016. LNCS, vol. 10068, pp. 156–166. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-50935-8_15 CrossRefGoogle Scholar
  10. 10.
    Johnson, E., Suhl, U.: Experiments in integer programming. Discret. Appl. Math. 2, 39–55 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kleywegt, A., Shapiro, A., Homem-de-Mello, T.: The sample average approximation method for stochastic discrete optimization. SIAM J. Optim. 12, 479–502 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    König, F., Lübbecke, M., Möhring, R., Schäfer, G., Spenke, I.: Solutions to real-world instances of PSPACE-complete stacking. In: Proceedings European Symposium on Algorithms (ESA’07). LNCS 4698, Springer (2007) 729–740Google Scholar
  13. 13.
    Liebchen, C., Lübbecke, M., Möhring, R., Stiller, S.: The Concept of Recoverable Robustness, Linear Programming Recovery, and Railway Applications. In: Ahuja, R.K., Möhring, R.H., Zaroliagis, C.D. (eds.) Robust and Online Large-Scale Optimization. LNCS, vol. 5868, pp. 1–27. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-05465-5_1 CrossRefGoogle Scholar
  14. 14.
    Lorenz, U., Martin, A., Wolf, J.: Polyhedral and Algorithmic Properties of Quantified Linear Programs. In: Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp. 512–523. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15775-2_44 CrossRefGoogle Scholar
  15. 15.
    Megow, N., Vredeveld, T.: Approximation results for preemptive stochastic online scheduling. In: Proceedings European Symposium on Algorithms (ESA’06). LNCS 4168, Springer (2006) 516–527Google Scholar
  16. 16.
    Möhring, R., Schulz, A., Uetz, M.: Approximation in stochastic scheduling: The power of LP-based priority schedules. Journal of the ACM 46, 924–942 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Papadimitriou, C.: Games against nature. Journal of Computer and System Sciences 31, 288–301 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & Sons Inc, New York (1986)zbMATHGoogle Scholar
  19. 19.
    Subramani, K.: On a decision procedure for quantified linear programs. Annals of Mathematics and Artificial Intelligence 51, 55–77 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Wolf, J.: Quantified Linear Programming. PhD Thesis, Darmstadt University of Technology (2015)Google Scholar
  21. 21.
    Zhang, L.: Searching for Truth: Techniques for Satisfiability of Boolean Formulas. PhD thesis, Princeton University (2003)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Thorsten Ederer
    • 2
  • Michael Hartisch
    • 1
    Email author
  • Ulf Lorenz
    • 1
  • Thomas Opfer
    • 2
  • Jan Wolf
    • 1
  1. 1.Chair of Technology ManagementUniversity SiegenSiegenGermany
  2. 2.HRZ, Technische Universität DarmstadtDarmstadtGermany

Personalised recommendations