Advertisement

Evaluating Chess-Like Games Using Generated Natural Language Descriptions

  • Jakub Kowalski
  • Łukasz Żarczyński
  • Andrzej Kisielewicz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10664)

Abstract

We continue our study of chess-like games defined as the class of Simplified Boardgames. We present an algorithm generating natural language descriptions of piece movements that can be used as a tool not only for explaining them to human players, but also for the task of procedural game generation using an evolutionary approach. We test our algorithm on some existing human-made and procedurally generated chess-like games.

References

  1. 1.
    Shaker, N., Togelius, J., Nelson, M.: Procedural Content Generation in Games: A Textbook and an Overview of Current Research. Springer, New York (2016).  https://doi.org/10.1007/978-3-319-42716-4 CrossRefGoogle Scholar
  2. 2.
    Nelson, M.J., Mateas, M.: Towards automated game design. In: Basili, R., Pazienza, M.T. (eds.) AI*IA 2007. LNCS, vol. 4733, pp. 626–637. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74782-6_54 CrossRefGoogle Scholar
  3. 3.
    Togelius, J., Nelson, M.J., Liapis, A.: Characteristics of generatable games. In: FDG Workshop on Procedural Content Generation, FDG (2014)Google Scholar
  4. 4.
    Zook, A., Riedl, M.O.: Automatic game design via mechanic generation. In: AAAI Conference on Artificial Intelligence, AAAI, pp. 530–537 (2014)Google Scholar
  5. 5.
    Pell, B.: METAGAME: a new challenge for games and learning. In: Heuristic Programming in Artificial Intelligence: The Third Computer Olympiad, Ellis Horwood (1992)Google Scholar
  6. 6.
    Browne, C., Maire, F.: Evolutionary game design. IEEE Trans. Comput. Intell. AI Games 2, 1–16 (2010)CrossRefGoogle Scholar
  7. 7.
    Font, J., Mahlmann, T., Manrique, D., Togelius, J.: Towards the automatic generation of card games through grammar-guided genetic programming. In: International Conference on the Foundations of Digital Games, FDG, pp. 360–363 (2013)Google Scholar
  8. 8.
    Togelius, J., Schmidhuber, J.: An experiment in automatic game design. In: IEEE Symposium on Computational Intelligence and Games, pp. 111–118. IEEE (2008)Google Scholar
  9. 9.
    Cook, M., Colton, S.: Multi-faceted evolution of simple arcade games. In: IEEE Conference on Computational Intelligence and Games, pp. 289–296. IEEE (2011)Google Scholar
  10. 10.
    Perez, D., Samothrakis, S., Togelius, J., Schaul, T., Lucas, S.M.: General video game AI: competition, challenges and opportunities. In: AAAI Conference on Artificial Intelligence, AAAI, pp. 4335–4337 (2016)Google Scholar
  11. 11.
    Nielsen, T.S., Barros, G.A.B., Togelius, J., Nelson, M.J.: Towards generating arcade game rules with VGDL. In: IEEE Conference on Computational Intelligence and Games, pp. 185–192. IEEE (2015)Google Scholar
  12. 12.
    Genesereth, M., Thielscher, M.: General Game Playing. Morgan & Claypool, San Rafael (2014)zbMATHGoogle Scholar
  13. 13.
    Wikipedia: Fairy chess piece, January 2017. https://en.wikipedia.org/wiki/Fairy_chess_piece
  14. 14.
    Dickins, A.: A Guide to Fairy Chess. Dover, Mineola (1971)Google Scholar
  15. 15.
    Kowalski, J., Sutowicz, J., Szykuła, M.: Simplified boardgames. arXiv:1606.02645 [cs.AI] (2016)
  16. 16.
    Kowalski, J., Szykuła, M.: Procedural content generation for GDL descriptions of simplified boardgames. arXiv:1108.1494 [cs.AI] (2015)
  17. 17.
    Kowalski, J., Szykuła, M.: Evolving chess-like games using relative algorithm performance profiles. In: Squillero, G., Burelli, P. (eds.) EvoApplications 2016. LNCS, vol. 9597, pp. 574–589. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-31204-0_37 CrossRefGoogle Scholar
  18. 18.
    Björnsson, Y.: Learning rules of simplified boardgames by observing. In: European Conference on Artificial Intelligence, FAIA, vol. 242, pp. 175–180 (2012)Google Scholar
  19. 19.
    Kowalski, J., Kisielewicz, A.: Testing general game players against a simplified boardgames player using temporal-difference learning. In: IEEE Congress on Evolutionary Computation, pp. 1466–1473. IEEE (2015)Google Scholar
  20. 20.
    Nielsen, T.S., Barros, G.A.B., Togelius, J., Nelson, M.J.: General video game evaluation using relative algorithm performance profiles. In: Mora, A.M., Squillero, G. (eds.) EvoApplications 2015. LNCS, vol. 9028, pp. 369–380. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-16549-3_30 Google Scholar
  21. 21.
    Pell, B.: METAGAME in symmetric chess-like games. In: Heuristic Programming in Artificial Intelligence: The Third Computer Olympiad, Ellis Horwood (1992)Google Scholar
  22. 22.
    Duniho, F.: The chess variant pages (2016). http://www.chessvariants.org/
  23. 23.
    Wikipedia: Chess with different armies, January 2017. https://en.wikipedia.org/wiki/Chess_with_different_armies

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jakub Kowalski
    • 1
  • Łukasz Żarczyński
    • 1
  • Andrzej Kisielewicz
    • 2
  1. 1.Institute of Computer ScienceUniversity of WrocławWrocławPoland
  2. 2.Institute of MathematicsUniversity of WrocławWrocławPoland

Personalised recommendations