General Issues of Gate-Level Simulation and Optimization of Digital Circuits with Consideration of Destabilizing Factors

  • Vazgen Melikyan
Chapter

Abstract

Principles of constructing systems for simulating and optimizing digital circuits with consideration of destabilizing factors (DF) are described, including principles of considering the influence of DF on the functioning of digital circuits, construction of models of logic elements, determination of the influence of DF on logic elements, organization of the system for simulating and optimizing digital circuits with consideration of DF. The effectiveness and prospects of this class of systems for simulating and optimizing digital circuits are shown.

References

  1. 1.
    Kang S., Leblebici Y., Kim Ch. CMOS Digital Integrated Circuits Analysis & Design. -McGraw-Hill Education; 4 edition, 2014. -736p.Google Scholar
  2. 2.
    Mehler R.W. Digital Integrated Circuit Design Using Verilog and Systemverilog. -Newnes; 1 edition, 2014. -448p.Google Scholar
  3. 3.
    Kirgizova A.V., Nikiforov A.Y., Grigor’ev N.G., Poljakov I.V., Skorobogatov P.K. Dominant mechanisms of transient-radiation upset in CMOS RAM VLSI circuits realized in SOS technology // Mikroelektronika, Vol. 35, No. 3, 2006. -P. 191-208.Google Scholar
  4. 4.
    Messomo E.A. Radiation and Temperature Effects on the APV25 Readout Chip for the CMS Tracker. PhD Dissertation, London University, 2002. -132p.Google Scholar
  5. 5.
    Ashok K. Goel. High-Speed VLSI Interconnections. -Wiley India; 2 edition. -2015. -432p.Google Scholar
  6. 6.
    Moiseev K., Kolodny A., Wimer S. Multi-Net Optimization of VLSI Interconnect. -Springer. -2015. -233p.
  7. 7.
    Lemieux G., Lewis D. Design of Interconnection Networks for Programmable Logic. -Springer; Softcover reprint of the original 1st ed. -2004. -206 p.Google Scholar
  8. 8.
    Duan C., LaMeres B.J. On and Off-Chip Crosstalk Avoidance in VLSI Design. -Springer. -2010. -240p.Google Scholar
  9. 9.
    Sahoo M., H. Rahaman. Impact of mutual inductance on the crosstalk induced effects in single-walled carbon nanotube bundle interconnects // 31st Symposium on Microelectronics Technology and Devices (SBMicro). -2016. -P. 286-290.Google Scholar
  10. 10.
    Zhang X., Jiang W. Impact of crosstalk on signal integrity of high density ceramic package for IC // 17th International Conference on Electronic Packaging Technology (ICEPT). -Paris, 2016. -Vol. 21, No. 12. -P. 429-433.Google Scholar
  11. 11.
    Li Ch., Rakhra P., Norman P. Practical computation of di/dt for high-speed protection of DC microgrids // IEEE DC Microgrids (ICDCM). -2017. -Vol. 64, -P. 153-159.Google Scholar
  12. 12.
    Zhao S., Roy K., Koh C.K. Estimation of Inductive and Resistive Switching Noise on Power Supply Network in Deep Sub-micron CMOS Circuits // ACM/IEEE International Conference on Computer Aided Design (ICCAD). -San Jose, 2000. -P. 65-72.Google Scholar
  13. 13.
    John H. Lau. 3D IC Integration and Packaging // McGraw-Hill Education; 1 edition. -2015. -P. 480Google Scholar
  14. 14.
    Vaisband I., Jakushokas R., Popovich M., Mezhiba A., Köse S., Friedman E. On-Chip Power Delivery and Management. -Springer. 2016. -P. 742.Google Scholar
  15. 15.
    Tramel R.W., Turowski M., Przekwas A., Schultz J., Frey R.G. Modeling of Electromagnetic Fields in High Speed Electronic Interconnects and Flex Circuit Boards Using a Least Squares FD-TD Algorithm // Fourth International Conference on Modeling and Simulation of Microsystems (MSM). -Hilton Head Island, South Carolina, 2001. -P. 602-605.Google Scholar
  16. 16.
    Chumakov A.I., Yanenko A.V., Kalashnikov O.A. RAM radiation functional upsets//Third Workshop on Electronics for LHC Experiments. -London, 1997. -P. 419-425.Google Scholar
  17. 17.
    Liden P. On Latching Probability of Particle Induced Transients in Combinational Networks // IEEE International Symposium on Fault Tolerant Computing (FTCS). -Madison, 1994. -P. 340-349.Google Scholar
  18. 18.
    Metra C., Favalli M., Ricco B. On-Line Detection of Logic Errors due to Crosstalk, Delay and Transient Faults // IEEE International Test conference. -Washington, 1998. -Vol. 8, No. 4. -P. 844-944.Google Scholar
  19. 19.
    Brayton R.K., Sangiovanni-Vincentelli A.L. Cross-Talk Noise Immune VLSI Design Using Regular Layout Fabrics. -Springer; 2001 edition. 2012. -P. 112.Google Scholar
  20. 20.
    Agakhanyan T.M. Mathematical Modeling of Ionizing-Radiation Effects in ICs: A Review // Russian Microelectronics. -2004. -Vol. 33, No. 2. -P. 64-67.Google Scholar
  21. 21.
    Lourenco N.E., Fleetwood Z.E., Ildefonso A. The Impact of Technology Scaling on the Single-Event Transient Response of SiGe HBTs // IEEE Transactions on Nuclear Science. -2017. -Vol. 64, Issue: 1. -P. 406-414.Google Scholar
  22. 22.
    Celik M., Pileggi L., Odabasioglu A. IC Interconnect Analysis. -Kluwer Academic Publishers, 2002. -320p.Google Scholar
  23. 23.
    Hall S.H., Heck H.L. Advanced Signal Integrity for High-Speed Digital Designs. -Wiley-IEEE Press; 1 edition, 2009. -680p.Google Scholar
  24. 24.
    Pasricha S., Dutt N. On-Chip Communication Architectures: System on Chip Interconnect (Systems on Silicon). -Morgan Kaufmann, 2008. -544p.Google Scholar
  25. 25.
    Nurmi J., Tenhunen H., Isoaho J., Jantcsh A. Interconnect-Centric Design for Advanced SOC and NOC. -Springer, 2010. -460p.Google Scholar
  26. 26.
    Theis T.N. The future of interconnection technology // IBM Journal Research and Development, 2000. -Vol. 44, No. 3, -P. 379-390.Google Scholar
  27. 27.
    Zarkesh-Ha P., Meindl J.D. Optimum On-Chip Power Distribution Networks for Gigascale Integration (GSI) // International Interconnect Technology Conference (IITC). -Austin, 2001. -P. 125-127.Google Scholar
  28. 28.
    Wang X., Zhang D., Su D.. A Novel Peak Power Supply Noise Measurement and Adaptation System for Integrated Circuits // IEEE Transactions on Very Large Scale Integration (VLSI) Systems. -Anaheim, California, 2016. -Vol. 24, Issue: 5. -P. 1715-1727.Google Scholar
  29. 29.
    Wu X., Hong X., Cai Y., Cheng C.K., Gu J., Dai W.M. Area Minimization of Power Distribution Network Using Efficient Nonlinear Programming Techniques // ACM/IEEE International Conference on Computer Aided Design (ICCAD). -San Jose, 2001. -P. 153-157.Google Scholar
  30. 30.
    Wing-Hung Ki. Power Management Integrated Circuit Analysis and Design. -Wiley-IEEE Press; 1 edition, 2017. -448p.Google Scholar
  31. 31.
    Bagad V.S. VLSI Design. Technical Publications; 1 edition, 2011. -288p.Google Scholar
  32. 32.
    Ashok B. Mehta. ASIC/SoC Functional Design Verification: A Comprehensive Guide to Technologies and Methodologies. -Springer, 2017. -328p.Google Scholar
  33. 33.
    Boylestad R., Nashelsky L. Electronic Devices and Circuit Theory. -Prentice Hall; 10 edition, 2008. -912p.Google Scholar
  34. 34.
    Zhang H., Krooswyk S., Ou J. High Speed Digital Design: Design of High Speed Interconnects and Signaling. -Morgan Kaufmann; 1 edition, 2015. -272p.Google Scholar
  35. 35.
    Jespers P., Murmann B. Systematic Design of Analog CMOS Circuits: Using Pre-Computed Lookup Tables. -Cambridge University Press, 2017. -342p.Google Scholar
  36. 36.
    Chen W. Analog and VLSI Circuits. -CRC Press; 3 edition, 2009. -702p.Google Scholar
  37. 37.
    Dobkin B., Williams D. Analog Circuit Design: A Tutorial Guide to Applications and Solutions. -Newnes; 1 edition, 2011. -960p.Google Scholar
  38. 38.
    Ott H.W.. Electromagnetic Compatibility Engineering. -Wiley; 1st edition, 2009. -872p.Google Scholar
  39. 39.
    Guo F., Feng X., Wang Z. Research on Time Domain Characteristics and Mathematical Model of Electromagnetic Radiation Noise Produced by Single Arc // IEEE Transactions on Components, Packaging and Manufacturing Technology. -2017. -Vol. PP, Issue: 99-P. 1-10.Google Scholar
  40. 40.
    Chumakov A.I. The effect of cosmic radiation on IC. -Ì.: Radio and communication, 2004. -320p. (in Russian)Google Scholar
  41. 41.
    Cherniak M.E., Smolin A.A., Ulanova A.V., Nikiforov A.Y. Investigation of Nonuniform Degradation of CMOS-Sensor Light-Sensitive Surface under Gamma-Irradiation // IEEE Radiation and Its Effects on Components and Systems (RADECS). -2015. -P. 1-3.Google Scholar
  42. 42.
    Agakhanyan T.M. Circuit-Design Techniques of Radiation Hardening for Monolithic Op Amps // Russian Microelectronics. -2004. -Vol. 33, No. 3. -P. 183-187.Google Scholar
  43. 43.
    Cherniak M., Smolin A., Ulanova A. Investigation of Nonuniform Degradation of CMOS-Sensor Light-Sensitive Surface under Gamma-Irradiation // IEEE Radiation and Its Effects on Components and Systems (RADECS). -2015. -P. 1-3.Google Scholar
  44. 44.
    Artamonov A.S., Demidov A.A., Kalashnikov O.A., Nikiforov A.Y., Polevich S.A., Telets V.A. Technique and Results of ADC/DAC Radiation Hardness Simulation Tests//Third Workshop on Electronics for LHC Experiments. -London, 1997. -P. 410-414.Google Scholar
  45. 45.
    Kloukinas K. Development of a radiation tolerant 2.0V standard cell library using a commercial deep submicron technology for the LHC experiments // Fourth Workshop on Electronics for LHC Experiments. -Rome, 1998. -P. 574-580.Google Scholar
  46. 46.
    Lacoe R. Application of Hardness-By-Design Methodology to Radiation-Tolerant ASIC Technologies // IEEE Transactions on Nuclear Science. -2000. -Vol. 47, No. 6. -P. 2334-2341.Google Scholar
  47. 47.
    Agakhanyan T.M., Astvatsaturyan E.P., Skorobogatov P.K. Radiation effects in integrated microcircuits. -Ì.: Enerergoatomizdat, 1989. -256p. (in Russian)Google Scholar
  48. 48.
    Korshunov F.P., Bogatirev Yu V., Vavilov V.A. The effect of radiation on integrated microcircuits. -Minsk: Science and Technology, 1986. -254p. (in Russian)Google Scholar
  49. 49.
    Chumakov A.I., Egorov A.N., Mavritsky O.B., Yanenko A.V. Evaluation of Moderately Focused Laser Irradiation as a Method for Simulating Single-Event Effects // Russian Microelectronics. -2004. -Vol. 33, No. 2. -P. 106-110.Google Scholar
  50. 50.
    Barnaby H.J., Cirba C.R., Schrimpf R.D., Fleetwood D.M., Pease R.L., Shaneyfelt M.R., Turflinger T., Krieg J.F., Maher M.C. Origins of total dose response variability in linear bipolar microcircuits // IEEE Transactions on Nuclear Science. -2000. -Vol. 47, No. 6. -P. 2342-2349..Google Scholar
  51. 51.
    Faccio F. Total dose and SEU measurement of test structures in a deep submicron technology // Fourth Workshop on Electronics for LHC Experiments. -Rome, 1998. -P. 114-117.Google Scholar
  52. 52.
    Campbell M. A pixel readout chip for 10-30 Mrad in standard 0.25mm CMOS//IEEE Nature Sounds Society (NSS) Symposium. -Toronto, 1998. -P. 823-891.Google Scholar
  53. 53.
    Osborn J. Total Dose Hardness of Three Commercial CMOS Microelectronics Foundries // IEEE Transactions on Nuclear Science. -1998. -Vol. 45, No. 3. -P. 1458-1463.Google Scholar
  54. 54.
    Holmes-Siedle A., Adams L. Handbook of Radiation Effects. -Oxford University Press, 1993. -218p.Google Scholar
  55. 55.
    Snoeys W., Faccio F., Burns M. Layout Techniques to Enhance the Radiation Tolerance of Standard CMOS Technologies Demonstrated on a Pixel Readout Chip // Nuclear Instructions and Methods. -2000. -Vol. 439. -P. 349-360.Google Scholar
  56. 56.
    Knoll G.F. Radiation Detection and Measurement. -John Wiley & Sons, 2000. -194p.Google Scholar
  57. 57.
    Candelori A., Contarato D., Bacchetta N. High-Energy Ion Irradiation Effects on Thin Oxide p-Channel MOSFETs // IEEE Transactions on Nuclear Science. -2002. -Vol. 49, No. 3. -P. 1364-1371.Google Scholar
  58. 58.
    Melikyan V. Logic simulation of digital circuits exposed to radiation // Facta universitatis, series: Electronics and Energetics. -Nis, 1999. -Vol. 12, No. 1. -P. 1-16.Google Scholar
  59. 59.
    Melikyan V. Sh., Muradyan V.O. Logic Simulation of radiation behavior of digital circuits // International conference “Computer science and information technologies”. -Yerevan, 2003. -P. 368-398. (in Russian)Google Scholar
  60. 60.
    Massengill L.W., Baranski A.E., Van Nort D.O. Analysis of Single-Event Effects in Combinational Logic-Simulation of the AM2901 BitSlice Processor // IEEE Transactions on Nuclear Science. -2000. -Vol. 47, No. 6. -P. 1911-1917.Google Scholar
  61. 61.
    Zhu X., Massengill L.W., Cirba C.R. The Effects of Nonphysical Carrier Velocities in High-Gradient Single Event Track Simulations // IEEE Transactions on Nuclear Science. -2000. -Vol. 47, No. 6. -P. 1741-1747.Google Scholar
  62. 62.
    Silveira L.M., Devadas S., Reis R.A. VLSI: Systems on a Chip. -Kluwer Academic Publishers, 2000. -696p.Google Scholar
  63. 63.
    J. Hurtarte. Understanding Fabless IC Technology. -Newnes; 1 edition, 2007. -296p.Google Scholar
  64. 64.
    Bagad V.S. VLSI Technology and Design. -Technical Publications; 1 edition, 2011. -428p.Google Scholar
  65. 65.
    M. F. Analog Design for CMOS VLSI Systems. -Kluwer Academic Publishers, 2001. -374p.Google Scholar
  66. 66.
    Yeo K.S., Rofail S.S., Goh W.L. CMOS/BiCMOS VLSI: Low Voltage, Low Power. -Prentice Hall, 2002. -624p.Google Scholar
  67. 67.
    Pursley D., Yeh T. High-level low-power system design optimization//IEEE VLSI Design, Automation and Test (VLSI-DAT). -2017. -P. 1-4.Google Scholar
  68. 68.
    Mishra S., Singh N. System on Chip Interfaces for Low Power Design. -Morgan Kaufmann; 1 edition, 2015. -406p.Google Scholar
  69. 69.
    Roy K. Low-Power CMOS VLSI Circuit Design. -John Wiley & Sons Inc, 2003. -320p.Google Scholar
  70. 70.
    Flynn D., Aitken R., Gibbons A., Shi K. Low Power Methodology Manual: For System-on-Chip Design. -Springer, 2011. -320p.Google Scholar
  71. 71.
    Taur Y., Ning T.H. Fundamentals of Modern VLSI Devices. New York: Cambridge University Press, 1998. -496p.Google Scholar
  72. 72.
    Jean Walrand K.B., Zobrist G. Advanced Computer Performance Modeling and Simulation. -CRC Press, 1998. -356p.Google Scholar
  73. 73.
    Singh A., Singh R. Electronics Circuit SPICE Simulations with LTspice: A Schematic Based Approach. -CreateSpace Independent Publishing Platform; 1 edition, 2015. -164p.Google Scholar
  74. 74.
    Basso Ch. Switch-Mode Power Supplies, SPICE Simulations and Practical Designs. -McGraw-Hill Education; 2 edition, 2014. -992p.Google Scholar
  75. 75.
    Guofu N., Shiming Z. Gressler J. Modeling of single-event effects in circuits-hardened high-speed SiGe HBT logic // IEEE Transactions on Nuclear Science. -2001. -Vol. 48, No. 6. -P. 1849-1854.Google Scholar
  76. 76.
    Agakhanyan T.M. Integrated Microcircuits. -Ì.: Energoatomizdat, 1983. -464p. (in Russian)Google Scholar
  77. 77.
    Alexenko A.G. Fundamentals of microcircuitry. -Ì.: Sov. radio, 1977. -403p. (in Russian)Google Scholar
  78. 78.
    Tsividis Y. Mixed Analog-Digital VLSI Devices and Technology. -Kluwer Academic Publishers, 2002. -300p.Google Scholar
  79. 79.
    Shagurin I.I. Transistor-transistor Logic Circuits. -Ì.: Sov. radio, 1974. -158p. (in Russian)Google Scholar
  80. 80.
    Maniwa T. Focus Report: ASICs Today // Integrated System Design Magazine. -2000. -P. 93-95, 98.Google Scholar
  81. 81.
    Razavi B. Design of analog CMOS integrated circuits. -McGraw-Hill Education; 2 edition, 2016. -800p.Google Scholar
  82. 82.
    Maloberti F. Analog Design for CMOS VLSI Systems. -Springer, 2010. -388p.Google Scholar
  83. 83.
    Baklanov M., Ho P., Zschech E. Advanced Interconnects for ULSI Technology. -Wiley; 1 edition, 2012. -606p.Google Scholar
  84. 84.
    Walker M.G. Modeling the wiring of deep submicron IC’s // IEEE Spectrum, -2000. -P. 65-71.Google Scholar
  85. 85.
    Goryachev V.A., Zakharov S.M. Transient Analysis of Shielded On-Chip Interconnections // Russian Microelectronics. -2003. -Vol. 32, No. 5. -P. 307-314.Google Scholar
  86. 86.
    Goryachev V.A. Effect of Discontinuities on ULSI On-Chip Interconnection Characteristics // Russian Microelectronics. -2002. -Vol. 31, No. 5. -P. 326-334.Google Scholar
  87. 87.
    Hong X.L., Zhu Q., Jing T. Non-rectilinear on-chip interconnect-an efficient routing solution with high performance // Chinese Journal of Semiconductors. -2003. -Vol. 24, No. 3. -P. 225-233.Google Scholar
  88. 88.
    Xu J., Hong X., Jing T., Zhang L. ETEM: An Efficient Gate and Interconnect Timing Estimator Considering Cross-Coupling for High Performance Layout//IEEE International conference on ASIC (ASICON). -Beijing, China, 2003. -Vol. 1. -P. 254-257.Google Scholar
  89. 89.
    Wang X., Yu W., Liu D., Wang Z. Fast extraction of 3-D interconnect resistance: numerical-analytical coupling method // IEEE International conference on ASIC (ASICON). -Beijing, China, 2003. -Vol. 1. -P. 315-318.Google Scholar
  90. 90.
    Li T., Wang Z. 2-D interconnect inductance and resistance extraction based on the coupled circuit method // Journal of Computer-Aided Design and Computer Graphics. -2003. -Vol. 15, No. 1. -P. 102-106.Google Scholar
  91. 91.
    Wu B. High-bandwidth IC interconnects with silicon interposers and bridges for 3D multi-chip integration and packaging // IEEE Semiconductor Technology International Conference (CSTIC). -2017. -P. 1-3.Google Scholar
  92. 92.
    Liu J., Salmela O., Sarkka J., Morris J.E., Tegehall P., Andersson C. Reliability of Microtechnology: Interconnects, Devices and Systems. -Springer, 2011. -204p.Google Scholar
  93. 93.
    Kashyap C., Krauter B. A realizable driving point model for on-chip interconnect with inductance // ACM/IEEE 37th Design Automation Conference. -Los Angeles, 2000. -P. 190-195.Google Scholar
  94. 94.
    Kleveland Qi X., Yu B.Z. On-chip inductance modeling of VLSI interconnects // International Solid State Circuits Conference (ISSCC). -San Francisco, 2000. -P.172-173.Google Scholar
  95. 95.
    Massoud Y., Majors S., Bustami T., White J. Layout techniques for minimizing on-chip interconnect self-inductance // ACM/IEEE 35th Design Automation Conference. -San Francisco, 1998. -P. 566-571.Google Scholar
  96. 96.
    Wu B. High-bandwidth IC interconnects with silicon interposers and bridges for 3D multi-chip integration and packaging // IEEE Semiconductor Technology International Conference (CSTIC). -2017. -P. 1-3.Google Scholar
  97. 97.
    Dengi E.A., Rohrer R.A. Hierarchical 2-D Field Solution for Capacitance Extraction for VLSI Interconnect Modeling // ACM/IEEE 34th Design Automation Conference. -Anaheim, California, 1997. -P. 127-132.Google Scholar
  98. 98.
    Delorme N., Belliville M., Chilo J. Inductance and capacitance analytic formulas for VLSI interconnects // Electronics letters. -1996. -Vol.32, No. 11. -P. 996-997.Google Scholar
  99. 99.
    Melikyan V. Sh., Vatyan A.O. Interconnections model delays for the logic analysis of TTL circuits // SUAB, Vol. 1, Computer Engineering, Moscow, 1997. -P. 189-198. (in Russian)Google Scholar
  100. 100.
    Melikyan V. Sh., Vatyan A.O. Interconnections model delays for the logic analysis of ECL circuits // SUAB, Vol. 2, Computer Engineering, Moscow, 1997.-P. 187-194. (in Russian)Google Scholar
  101. 101.
    Melikyan V. Sh., Vatyan A.O. Interconnections model delays for the logic analysis of I2L circuits // SUAB, Vol. 3, Computer Engineering, Moscow, 1997. -P. 163-166. (in Russian)Google Scholar
  102. 102.
    Melikyan V. Sh., Vatyan A.O., Simonyan A. Sh. Delay models of digital VLSI Interconnects // RAs National Academy of Science and SEUA. Vol. 3, N 3, Yerevan, 1997. -P. 201-205. (in Armenian)Google Scholar
  103. 103.
    Melikyan V. Sh., Sargsyan S.M., Petrosyan D.A. Calculation model of parasitic inductances of inner interconnects of VLSI // Simulation, optimization, control, SEUA, Yerevan, Vol. 1, No. 7, 2004. -P. 59-68. (in Russian)Google Scholar
  104. 104.
    Melikyan V., Sargsyan S., Petrosyan D. A macromodel of internal interconnects of ICs // RAs National Academy of Science and SEUA. Vol. 57, No. 3, Yerevan, 2004. -P. 506-516. (in Armenian)Google Scholar
  105. 105.
    Davis J.A., De V.K., Meindl J.D. A stochastic wire-length distribution for gigascale integration (GSI). – Part I: Derivation and validation // IEEE Transactions on Electron Devices. -1998. -Vol. 45. -P. 580-589.Google Scholar
  106. 106.
    Wei H., Wang Z. A weighted average formula for efficient inductance and resistance extraction // IEEE International conference on ASIC (ASICON). -Beijing, China, 2003. -Vol. 1. -P. 996-999.Google Scholar
  107. 107.
    Ismail Y.I., Friedman E.G. Effects of inductance on the propagation delay and repeater insertion in VLSI circuits // IEEE Transactions on Very Large Scale Integration (VLSI) Systems. -2000. -Vol. 8. -P. 195-206.Google Scholar
  108. 108.
    Rao V.B. Delays analysis of the distributed RC line // ACM/IEEE 32nd Design Automation Conference. -San Francisco, 1995. -Vol. 12, No. 5. -P. 370-375.Google Scholar
  109. 109.
    Shepard K.L., Narayanan V., Elmendorf P.C., Cheng G. Global Harmony: Coupled Noise Analysis for Full-Chip RC Interconnect Networks // ACM/IEEE International Conference on Computer Aided Design (ICCAD). -San Jose, 1997. -P. 139-141.Google Scholar
  110. 110.
    Zhang L., Jing T., Hong X., Xu J., Xiong J., He L. Performance Optimization Global Routing with RLC Crosstalk Constraints // IEEE International conference on ASIC (ASICON). -Beijing, China, 2003. -Vol. 1. -P. 191-194.Google Scholar
  111. 111.
    Chen W.Y., Gupta S.K., Breuer M.A. Test Generation for Crosstalk-Induced Delay in Integrated Circuits // IEEE International Test Conference (ITC). -Washington, 1999. -P. 191-200.Google Scholar
  112. 112.
    Gupta A. Crosstalk noise and delay analysis for high speed on-chip global RLC VLSI interconnects with mutual inductance using 90nm process technology // IEEE Computing, Communication & Automation (ICCCA). -2015. -P. 1215-1219.Google Scholar
  113. 113.
    Caddemi A., Cardillo E.. A study on dynamic threshold for the crosstalk reduction in frequency-modulated radars // IEEE Computing and Electromagnetics International Workshop (CEM). -2017. -P. 29-30.Google Scholar
  114. 114.
    Khatri S.P., Brayton R.K., Sangiovanni-Vincentelli A.L. Cross-Talk Noise Immune VLSI Design Using Regular Layout Fabrics. -Kluwer Academic Publishers, 2001. -144p.Google Scholar
  115. 115.
    Xu J., Hong X., Jing T., Cai Y., Gu J. A Novel Timing-Driven Global Routing Algorithm Considering Coupling Effects for High Performance Circuit Design // IEEE Asia and South Pacific Design Automation Conference. -Kitakyushu, Japan, 2003. -Vol. E86-A, No. 12. -P. 847-850.Google Scholar
  116. 116.
    Servel G., Huret F., Paleczny E. Inductance Effect in Interconnect Coupling Noise // IEEE 5th Workshop on signal propagation on Interconnects. -Venice, 2001. -P. 74-81.Google Scholar
  117. 117.
    Archambeault B. PCB Design for Real-World Emi Control. -Kluwer Academic Publishers, 2002. -244p.Google Scholar
  118. 118.
    John H. Lau. 3D IC Integration and Packaging. -McGraw-Hill Education; 1 edition, 2015. -480p.Google Scholar
  119. 119.
    Xiao H. 3D IC Devices, Technologies, and Manufacturing. -The International Society for Optical Engineering, 2016. -P. 220p.Google Scholar
  120. 120.
    Kuo J., Su K. CMOS VLSI Engineering: Silicon-on-Insulator (SOI). -Springer, 2010. -460p.Google Scholar
  121. 121.
    Amaru L. New Data Structures and Algorithms for Logic Synthesis and Verification. -Springer; 2017, -156p.Google Scholar
  122. 122.
    Qiu M., Li J. Real-Time Embedded Systems: Optimization, Synthesis, and Networking. -CRS Press; 1 edition, 2011. -231p.Google Scholar
  123. 123.
    Roth Ch.H., Kinney L. Fundamentals of Logic Design. -CL-Engineering; 6 edition, 2009. -784p.Google Scholar
  124. 124.
    Semiconductor Industry Association. The National Technology Roadmap for Semiconductors (SIA 2015). -62p.Google Scholar
  125. 125.
    The International Technology Roadmap for Semiconductors. -2016. -75p.Google Scholar
  126. 126.
    Semiconductor Industry Association. The National Technology Roadmap for Semiconductors (SIA 2014). -40p.Google Scholar
  127. 127.
    Restle P., Ruehli A., Walker S.G. Dealing with inductance in high-speed chip design // ACM/IEEE 36th Design Automation Conference. -New Orleans, 1999. -P. 904-909.Google Scholar
  128. 128.
    Hong X.L., Jing T., Xu J.Y., Bao H.Y., Gu J. CNB: A Critical-Network-Based Timing Optimization Method for Standard Cell Global Routing // Journal of Computer Science and Technology (JCST). -2003. -Vol. 18, No. 6. -P. 732-738.Google Scholar
  129. 129.
    Bubennikov A., Blinnik S. Design and Optimization of Super-Speed CMOS. CBiCMOS Circuits Based on TCAD and Time-Logical Simulator // Baltic Electronics Conference (BEC). -Tallin, 1996. -P. 256-261.
  130. 130.
    Melikyan V.Sh., Nazinyan S.M. Optimization algorithm of digital paths delays // Proceedings of “Computer Science and Information technologies” International Conference, Yerevan, 1997. -P. 322-325. (in Armenian)Google Scholar
  131. 131.
    Melikyan V.Sh., Hovhannisyan D.D. Delay minimization algorithm of critical paths of digital circuits // RAs National Academy of Science and SEUA. Vol. 57, No. 2, Yerevan, 2004. -P. 324-330. (in Russian)Google Scholar
  132. 132.
    Wunder B., Lehmann G., Muller-Glaser K.D. VAMP: a VHDL based concept for accurate modeling and post layout timing simulation of electronic systems. // ACM/IEEE 33rd Design Automation Conference. -Las Vegas, 1996. -P. 119-124.Google Scholar
  133. 133.
    Liou J.J., Wang L.C., Cheng K.T. On Theoretical and Practical Considerations of Path Selection for Delay Fault Testing // ACM/IEEE International Conference on Computer Aided Design (ICCAD). -Freiberg, 2002. -P. 94-100.Google Scholar
  134. 134.
    Chen H.C., Du D.H., Liu L.R. Critical Path Selection for Performance Optimization // IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems. -1993. -Vol. 12, No. 2. -P. 185-195.Google Scholar
  135. 135.
    Graziano M., Delaurenti M., Masera G., Piccinini G., Zamboni M. Noise Safety Design Methodologies // IEEE International Symposium on Quality Electronic Design (ISQED). -Arlington, 2000. -P. 157-166.Google Scholar
  136. 136.
    Melikyan V.Sh., Hovasapyan N.O., Manukyan G.G. Definition of noise immunity of digital VLSI//Interuniversity proceedings of YPI “Technical means and mathematical provision of computing systems”, Yerevan, 1988. -P. 60-62. (in Russian)Google Scholar
  137. 137.
    Fu J., Hong X., Cai Y., Luo Z. Decoupling Capacitor Allocation for Power Delivery Network Noise Reduction Based on Standard Cell Layouts // IEEE International conference on ASIC(ASICON). -Beijing, China, 2003. -Vol. 1. -P. 101-104.Google Scholar
  138. 138.
    Liou J.J., Krstic A., Jiang Y.M., Cheng K.T. Modeling, Testing and Analysis for Delay Defects and Noise Effects in Deep Submicron Devices // IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. -2003. -Vol. 22, No. 6. -P. 756-769.Google Scholar
  139. 139.
    Melikyan V., Sargsyan S. A simulation method of considering parasitic effects of supply buses of ICs // Information Technologies and Management. Vol. 1, Yerevan, 2004. -P. 34-48. (in Armenian)Google Scholar
  140. 140.
    Sotiriadis P., Chandrakasan A. Reducing bus delay in sub-micron technology using coding // IEEE Asia and South Pacific Design Automation Conference. -Japan, Yokohama, 2001. -P. 109-114.Google Scholar
  141. 141.
    Kleveland B., Qi X., Madden L. Line inductance extraction and modeling in real chip with power grid // International Electron Devices Meeting. -1999. -P. 901-904.Google Scholar
  142. 142.
    Saleh R., Hussain Z., Rochel S., Overhauser D. Clock Verification in the Presence of IR-drop in the Power Distribution Network // IEEE Transaction on CAD of IC and Systems. -2000. -Vol. 19, No. 6. -P. 635-644.Google Scholar
  143. 143.
    Aragones X., Gonzales J., Rubio A. Analysis and Solutions for switching Noise Coupling in Mixed-Signal ICs. -Kluwer Academic Publishers, 1999. -236p.Google Scholar
  144. 144.
    Charbon E., Gharpurey R., Miliozzi P., Meyer R.G., Sangiovanni-Vincentelli A.L. Substrate Noise Analysis and Optimization for IC Design. -Kluwer Academic Publishers, 2001. -200p.Google Scholar
  145. 145.
    Van Heijningen M., Compiet J., Wambacq P., Donnay S., Engels M., Bolsens L. Analysis and Experimental Verification of Digital Substrate Noise Generation for Epi-Type Substrates // IEEE Journal Solid-State Circuits. -2000. -Vol. 35. -P. 1002-1008.Google Scholar
  146. 146.
    Panda R., Blaauw D., Chaudry R., Zolotov V., Young B., Ramaraju R. Model and Analysis for Combined Package and On-Chip Power Grid Simulation // International Symposium on Low Power Electronics and Design (ISLPED). -Huntington Beach, California, 2000. -P. 179-184.Google Scholar
  147. 147.
    Bondyopadhyay P.K. Moore’s law governs the silicon revolution // Proceedings of the IEEE. -1998. -Vol. 86, No. 1. -P. 78-81.Google Scholar
  148. 148.
    Burger D., Goodman J.R. Billion-transistor architectures // Proceedings of the IEEE Computer. -1997. -Vol. 30, No. 9. -P. 46-48.Google Scholar
  149. 149.
    Norenkov I.P. Automated design basics. -M.: MNTU after N.E. Bauman, 2002. -336p. (in Russian)Google Scholar
  150. 150.
    Zobrist G., Leonard J.V. Simulation Systems. -CRC Press, 2000. -324p.Google Scholar
  151. 151.
    Hatchel G.D., Sangiovanni-Vincentelli A. A Survey of Third Generation Simulation Techniques // Proceedings of the IEEE. -1981. -Vol. 69, No. 10. -P. 1264-1280.Google Scholar
  152. 152.
    Barmakov Yu N., Bakharov V.A., Ilyin V.N. et al. Research results for a range of electronic circuit analysis programs // Proc. of USSR universities. Radioelectronics. -1981. N 6. -P. 27-37. (in Russian)Google Scholar
  153. 153.
    Newton A.R. Computer-aided design of superintegrated integrated circuits//Works of TIIER. -1981. -T.69, N10. -P. 7-20.Google Scholar
  154. 154.
    Farrahi A.H., Hathaway D.J., Wang M., Sarrafzadeh M. Quality of EDA CAD Tools: Definitions, Metrics and Directions // 1st International Symposium on Quality of Electronic Design. -San Jose, 2000. -P. 395-403.Google Scholar
  155. 155.
    Breuer M.A. Latest achievements in design automation and analysis of digital circuits//In book: Automation in Design/under editorship of D. Kalakhan and others. ‑M.: Mir, 1972. -P. 19-47. (in Russian)Google Scholar
  156. 156.
    Batalov B.V., Egorov Yu. B., Rusakov S.G. Mathematical modeling basics of VLSI on PCs. -M.: Radio i svyaz, 1982. -168p. (in Russian)Google Scholar
  157. 157.
    Jr. Roth, L. John. Digital Systems Design Using VHDL.-CL. Engineering; 3 edition, 2017. -628p.Google Scholar
  158. 158.
    Clietti M. Advanced Digital Design with The Verilog Hdl. -Pearson India, 2017. -992p.Google Scholar
  159. 159.
    Abraitis L.B., Sheynauskas R.I., Jilevichyus V.A. Computer-aided design. -M.: Sov. Radio, 1978. -272p. (in Russian)Google Scholar
  160. 160.
    Budulin S.S., Barmaulov Yu M., Berdishyev V.A. Automated design of digital circuits. -M.: Radio i svyaz, 1981. -240p. (in Russian)Google Scholar
  161. 161.
    Waterman S. Digital Logic Simulation and CPLD Programming with VHDL. -Prentice Hall, 2003. -301p.Google Scholar
  162. 162.
    Nguyen Q., Van Le T. Time-parameterized Temporal Logic-based Framework for Discrete-Event Simulation // 9th International Symposium on Languages for Intensional Programming. -Aachen, 1996. -Vol. 11, No. 8. -P. 43-51.Google Scholar
  163. 163.
    Avril H., Tropper C. Scalable Clustered Time Warp and Logic Simulation // VLSI Design. -1999. -Vol. 9, No. 3. -P. 36-42.Google Scholar
  164. 164.
    Kim H., Jean J. Concurrency Preserving Partitioning Algorithm for Parallel Logic Simulation // VLSI Design. -1999. -Vol. 9, No. 3. -P. 23-29.Google Scholar
  165. 165.
    Melikyan V.Sh. Logic simulation algorithm of digital circuits with consideration of environment temperature // Proceedings of 3rd International scientific-technical conference “Innovative Information Technologies and Systems”, Penza, 1998. -P. 158-160. (in Russian)Google Scholar
  166. 166.
    Melikyan V.Sh. Logic simulation of digital circuits with consideration of destabilizing factors // Proceedings of the 5th International Conference on The Experience of Designing and Application of CAD Systems in Microelectronics (CADSM’99), Lvov, 1999. -P. 142-144. (in Russian)Google Scholar
  167. 167.
    Melikyan V., Poghosyan A., Durgaryan A., Petrosyan H., Simonyan M. Method of Parametrical Optimization of Multi-Core Processors // Proceedings of the 31st International Scientific-Technical Conference on “Electronics and Nanotechnologies”, Kiev, Ukraine, 2011. -P. 126-130. (in Russian)Google Scholar
  168. 168.
    Melikyan V.Sh., Simonyan A.Sh. Consideration of external affects in the program of logic analysis // Interuniversity proceedings of YPI “Technical means and mathematical provision of computing systems”, Yerevan, 1990. -P. 61-64. (in Russian)Google Scholar
  169. 169.
    Melikyan V.Sh. Principles of logic simulation of digital circuits with consideration of destabilizing factors // Proceedings of “Computer Science and Information Technologies” International Conference, Yerevan, 1999. -389-393. (in Russian)Google Scholar
  170. 170.
    Melikyan V.Sh., Balagezyan A.R. Key design tools of logic macromodels of digital circuits // Proceedings of “Computer Science and Information Technologies” International Conference, Yerevan, 1999. -P. 394-398. (in Russian)Google Scholar
  171. 171.
    Heydemann M.H. A survey of MOS logic simulation tools // 9th European Solid-State Circuits Conference. -Lausanne, 1983. -P. 19-24.Google Scholar
  172. 172.
    Levin V.I. Dynamics of Logical devices and systems. -M.: Energy, 1980. -224p. (in Russian)Google Scholar
  173. 173.
    Zolotorevich L.A. Delay-Conscious Switch-Level Modeling of MOS LSI Circuits // Russian Microelectronics. -2003. -Vol. 32, No. 3. -P. 182-188.Google Scholar
  174. 174.
    Melikyan V.Sh., Ovasapyan N.O., Petrukhin V.P. United system of logic simulation and layout design of VLSI // Automation design in electronics, “Technics”, Vol. 40, Kiev, 1989. -P. 61-64. (in Russian)Google Scholar
  175. 175.
    Melikyan V., Soghomonyan V., Mkrtchyan E. Model of digital cells’ states in algorithmic calculation//Interuniversity scientific and methodical proceedings. 6.51. Yerevan, 2003. -P. 44-54. (in Armenian)Google Scholar
  176. 176.
    Melikyan V., Kulakhszyan A. Logic models with consideration of leakage delays, quantum and averaged states // Information technologies and management. Vol. 3, Yerevan, 2003. -P. 8-15. (in Armenian)Google Scholar
  177. 177.
    Melikyan V., Kulakhszyan A. Logic models with averaged states // RAs National Academy of Science and SEUA, Yerevan, RA, Vol. 56, No. 3, Yerevan, 2003. -P. 491-499. (in Armenian)Google Scholar
  178. 178.
    Lu S.K., Chen J.L., Wu C.W., Chang W.F., Huang S.Y. Combinational circuit fault diagnosis using logic emulation // IEEE International Symposium on Circuits and Systems (ISCAS). -Bangkok, 2003. -Vol. 5. -P. 549-552.Google Scholar
  179. 179.
    Schittenkopf Ch., Deco G., Brauer W. Finit Automata-Models for the Investigation of Dynamical Systems // Information Processing Letters. -1997. -Vol.63, No. 3. -P. 137-141.Google Scholar
  180. 180.
    Snubald R., Svensson C. Accurate CMOS Models for Event driven logic simulators // European Conference on Circuit Theory and Design (ECCTD). -Stutgard, 1985. -P. 483-485.Google Scholar
  181. 181.
    Wang Z., Maurel P.M. LECSIM: A levelized event driven compiled logic simulator // ACM/IEEE 27th Design Automation Conference. -Orlando, Florida, 1990. -P. 491-496.Google Scholar
  182. 182.
    Hayes J.P. Digital Simulation with multiple logic values // IEEE Transaction on CAD. -1986. -Vol. 5, No. 2. -P. 274-283.Google Scholar
  183. 183.
    Flake P.L., Moorby P.R., Musgrave G. An Algebra for Logic Strength Simulation // ACM/IEEE 20th Design Automation Conference. -1983. -P. 615-618.Google Scholar
  184. 184.
    Herout A., Szanto L. Logic Simulator Based on Resistor Nets // 7th European Conference on Circuit Theory and Design (ECCTD). -Prague, 1985. -P. 149-152.Google Scholar
  185. 185.
    Keller J., Rauber T., Rederlechner B. Scalability Analysis for Conservative Simulation of Logical Circuits // VLSI Design. -1999. -Vol. 9, No. 3. -P. 8-15.Google Scholar
  186. 186.
    Miszo A. Digital logic testing and simulation. -New York: John Wiley and Sons, 1987. -285p.Google Scholar
  187. 187.
    Bailay M.L., Briner J.V., Chamberlain R.D. Parallel logic simulation of VLSI systems // ACM Computing Surveys. -1994. -Vol. 26, No. 3. -P. 255-294.Google Scholar
  188. 188.
    Steinman J. SPEEDES: A multiple synchronization environment for parallel discrete-event simulation // Journal on Computer Simulation. -1992. Vol. 2. -P. 251-286.Google Scholar
  189. 189.
    Chamberlain R.D. Parallel logic simulation of VLSI systems // ACM/IEEE 32nd Design Automation Conference. -San Francisco, 1995. -P. 139-143.Google Scholar
  190. 190.
    Ferscha A. Parallel and distributed simulation of discrete event systems // Parallel and Distributed Computing Handbook. -McGraw-Hill, 1995. -P. 666-673.Google Scholar
  191. 191.
    Naroska E. Parallel VHDL simulation // ACM/IEEE Conference Design, Automation and Test in Europe (DATE). -Paris, 1998. -P. 159.Google Scholar
  192. 192.
    Longeann D., Richard Shi C.J. Distributed simulation of VLSI circuits via lookahead-free self-adaptive optimistic and conservative synchronization // ACM/IEEE International Conference on Computer Aided Design (ICCAD). -San Jose, 1998. -P. 362.Google Scholar
  193. 193.
    Walker P.A., Ghosh S. Asynchronous, distributed event driven simulation algorithm for execution of VHDL on parallel processors // ACM/IEEE 32nd Design Automation Conference. -San Francisco, 1995. -P. 144.Google Scholar
  194. 194.
    Noble B.L., Chamberlain R.D. Performance of Speculative Computation in Synchronous Parallel Discrete-Event Simulation on Multiuser Execution Platforms // 8th IASTED International Conference on Parallel and Distributed Computing and Systems (PDCS). -Chicago, 1996. -P. 489-494.Google Scholar
  195. 195.
    Noble B.L., Peterson G.D., Chamberlain R.D. Performance of Synchronous Parallel Discrete-event Simulation // 28th International Conference on System Sciences. -Waileau Maui, 1995. -Vol. 2. -P. 185-186.Google Scholar
  196. 196.
    Noble B.L., Wade J.C., Chamberlain R.D. Performance Predictions for Speculative, Syschronous, VLSI Logic Simulation // 34th Annual Simulation Symposium. -Waileau Maui, 2001. -P. 56-64.Google Scholar
  197. 197.
    Chen Y., Noble B.L., Chamberlain R.D. Comparing Edge-cuts to Communications Volume in Parallel VLSI Logic Simulation // 8th IASTED International Conference on Parallel and Distributed Computing and Systems (PDCS). -Chicago, 1996. -P. 481-484.Google Scholar
  198. 198.
    Luksch P. Evaluation of three approaches to parallel logic simulation on a distributed memory multiprocessor // 26th Annual Simulation Symposium. -Arlington, 1993. -P. 2-11.Google Scholar
  199. 199.
    Lewis D. M. A hierarchical compiled code event-driven logic simulator // IEEE Transaction Computer-Aided Design. -1991. -Vol. 10. -P. 726-737.Google Scholar
  200. 200.
    Melikyan V.Sh. A logic simulation method for reproduction of signal bumps in interconnects // Manual of Engineering Academy of Armenia. Vol. 1, No. 3, Yerevan, 2004. -P. 449-451. (in Russian)Google Scholar
  201. 203.
    Arkhangelskiy A.Y., Arkhangelskaya I.T., Gribkova E.M., Levshin N.G., Melikyan V.Sh., Savinova T.A., Sergienko V.Y. Design automation of electronic circuits / under the editorship of T.M Akhakhanyan. -M.: MEPhI, 1985. -92p. (in Russian)Google Scholar
  202. 204.
    Ogrodzki J. Circuit Simulation Methods and Algorithms. -CRC Press, 1994. -342p.Google Scholar
  203. 205.
    Arkhangelskiy A.Y., Levshin N.G., Svetsov S.V. Complex of programs of electrical analysis of electronic devices ELAIS.-J.: MEPhI, 1982. -90p. (in Russian)Google Scholar
  204. 206.
    Valtonen M. APLAC-Object-Oriented Circuit Simulation and Design Tool // IEEE Microwaves and RF Conference. -London, 1997. -P. 245-250.Google Scholar
  205. 207.
    Abramov I.I., Goncharenko I.A., Ignatenko S.A., Korolev A.V., Novik E.G., Rogachev A.I. Nanodev: A Nanoelectronic-Device Simulation Software System // Russian Microelectronics. -2003. -Vol. 32, No. 2. -P. 97-104.Google Scholar
  206. 208.
    S. Li, Y. Fu. 3D TCAD Simulation for Semiconductor Processes, Devices and Optoelectronics. -Springer; 2016. -308p.Google Scholar
  207. 209.
    Bubennikov A.N., Sadovnikov A.D. Physical-technological design of bipolar elements in silicon ICs. -M.: Radio i svyaz, 1991. -288p. (in Russian)Google Scholar
  208. 210.
    Abramov I.I. Simulation of physical processes in silicon integral microcircuit elements. -BSU, 1999. -89p. (in Russian).Google Scholar
  209. 211.
    Litovski V., Zwolinski M. VLSI Circuit Simulation and Optimization. -Kluwer Academic Publishers, 1996. -368p.Google Scholar
  210. 212.
    Grivet Talocia S., Stievano I.S., Maio I.A., Canavero F.G. Combined FDTD macromodel simulation of interconnected digital devices // ACM/IEEE Conference Design, Automation and Test in Europe (DATE). -Munich, 2003. -P. 536-541.Google Scholar
  211. 213.
    Forzan C., Franzini B., Guardiani C. Accurate and Efficient Macromodel of Submicron Digital Standard Cells//ACM/IEEE 34th Design Automation Conference. -Anaheim, California, 1997. -Vol. 15, No. 3. -P. 356-361.Google Scholar
  212. 214.
    Stievano S., Chen Z., Becker D., Canavero F.G., Katopis G., Maio I.A. Macromodeling of Digital I/O Ports for System EMC Assessment // ACM/IEEE Conference Design, Automation and Test in Europe (DATE). -Paris, 2002. -P. 1044-1049.Google Scholar
  213. 215.
    Odabasioglu A., Celik M., Pileggi L.T. PRIMA: Passive Reduced-order Interconnect Macromodeling Algorithm // ACM/IEEE 34th Design Automation Conference. -Anaheim, California, 1997. -P. 58-65.Google Scholar
  214. 216.
    Kong J.T., Overbauser D. Methods to improve digital MOS macromodel accuracy // IEEE Transaction on Computer-Aided Design of Integrated Circuits and Systems. -1995. -Vol. 14, No. 7. -P. 868-881.Google Scholar
  215. 217.
    Petkovic P., Litovski V. Macromodeling and macroanalysis of CMOS LSI electronic circuits // The first International Conference on Computer Technology, Systems and Applications. -Hamburg, 1987. -P. 512-513.Google Scholar
  216. 218.
    Dartu F., Tutuianu B., Pileggi L.T. RC-Interconnect Macromodels for Timing Simulation // ACM/IEEE 33rd Design Automation Conference. -Las Vegas, 1996. -P. 611-616.Google Scholar
  217. 219.
    Melikyan V.Sh., Arkhangelskiy A.Y. Macromodels on switched capacitors elements // Radioelectronics. Vol. 29, No. 6, 1986. -P. 86-87. (in Russian)Google Scholar
  218. 220.
    Melikyan V.Sh. Macromodel of logic gate-chains//Simulation, optimization, control, State Engineering University of Armenia, Yerevan, Armenia, Vol. 2, Yerevan, 1998. -P. 52-57. (in Armenian)Google Scholar
  219. 221.
    Arkhangelsky A., Svettsov S. Methodology of synthesis of electric macromodels of logic circuits of medium and large integration levels // Computer-aided design in electronics. -Kiev, 1980. -T.22. P. 64-70, (in Russian)Google Scholar
  220. 222.
    Flexer L.A., Tumanov V.S. Analysis of complex circuits by macrosimulation method//News of higher educational institutions of the USSR. Radio electronics. -1983. -T.26, N 6. -P. 81-83 (in Russian).Google Scholar
  221. 223.
    Baghov V.A. Macrosimulation of digital and pulse circuits using macro elements // News of higher educational institutions of the USSR. Radio electronics. -1980. -N 6. -P. 13-20. (in Russian)Google Scholar
  222. 224.
    Greenbaum J.R. Digital-IC models for computer aided design // Electronics. -1973. -Vol. 46, No. 25. -P. 154-175.Google Scholar
  223. 225.
    Li X., Li P., Xu Y., Pileggi L.T. Analog and RF Circuit Macromodels for System-Level Analysis // ACM/IEEE 41th Design Automation Conference. -Anaheim, California 2003. -P. 478-483.Google Scholar
  224. 226.
    Bogliolo A., Benini L. Robust RTL Power Macromodels // IEEE Transactions On Very Large Scale Integration (VLSI) Systems. -1998. -Vol. 6, No. 4. -P. 578-581.Google Scholar
  225. 227.
    Arkhangelskiy A.Y. Mixed-Mode Simulation of VLSI.-Kiev: Znanie, 1985. -24p. (in Russian)Google Scholar
  226. 228.
    Melikyan V. Structural and eventual decomposition of large electronic schemes // Trans black sea region symposium on applied electromagnetism. -Athens, 1996. -P. MMWS 7.Google Scholar
  227. 229.
    Melikyan V., Mkrtchyan E., Mkrtchyan K., Hovhannisyan D., Soghomonyan V. Isolation methods of electronic circuits // RAs National Academy of Science and SEUA, Vol. 57, No 1, Yerevan, 2004. -P. 130-137. (in Armenian)Google Scholar
  228. 230.
    De Man H.J., Newton A.R. Hybrid Simulation // IEEE International Symposium on Circuits and Systems (ISCAS). -Tokyo, Japan, 1979. -P. 249-259.Google Scholar
  229. 231.
    Reynaert Ph., De Man H., Arnout Y., Cornelissen J. DIANA: A Mixed-Mode Simulator with a Hardware Description Language for Hierarchical Design of VLSI // IEEE International Conference on Circuits and Computers. -New York, 1980. -P. 356-360.Google Scholar
  230. 232.
    Saleh R.A., Newton A.R. Mixed-mode Simulation. -Kluwer Academic Publishers, 1990. -248p.Google Scholar
  231. 233.
    De Man H.J. Mixed-Mode Simulation for MOS-VLSI Why, Where and How? // IEEE International Symposium on Circuits and Systems (ISCAS). -Rome, Italy, 1982. -P. 699-701.Google Scholar
  232. 234.
    Maniwa R. Analog and Mixed-Signal Simulation Tools//Integrated System Design. -1996. -Vol. 2, No. 3. -P. 58-64.Google Scholar
  233. 235.
    Melikyan V.Sh. Logic-circuit simulation of analog-digital nodes of radio metering devices // Proceedings of 9th All-Union Scientific-Technical Conference of “Radio metering”, Kaunas, 1983. -P. 177-180. (in Russian)Google Scholar
  234. 236.
    Arkhangelskiy A.Y. Lavrenov O.E., Rojukalns P.P., Melikyan V. Sh., Svettsov S.V., Fedorkov B.G. A program of mixed-mode simulation of analog-digital VLSI//Theses of reports of All-Union Conference of “Methods and microelectronic means of digital conversion and signal processing”, Riga, 1983. -P. 231-236. (in Russian)Google Scholar
  235. 237.
    Arkhangelskiy A.Y., Melikyan V.Sh. Functionality models of logic cells in the program of mixed-mode logic-circuit simulation // Theses of reports of All-Union Scientific-Technical Conference of “Design Automation of Computers and Systems”, Yerevan, 1983. -P. 80-82. (in Russian)Google Scholar
  236. 238.
    Melikyan V.Sh., Arkhangelskiy A.Y. Mixed-mode circuit and logic simulation of analog digital circuits // Electronic simulation, Vol. 6, N5, Kiev, Ukraine, 1984. -P. 35-39. (in Russian)Google Scholar
  237. 239.
    Arkhangelskiy A.Y., Melikyan V.Sh., Levshin N.G. Principles of designing a system of mixed-mode simulation of electronic circuits // Seminar materials of “Design Automation in radioelectronics and electrical engineering”, Moscow, 1984. -P. 91-93. (in Russian)Google Scholar
  238. 240.
    Arkhangelskiy A.Y., Melikyan V.Sh. A program of mixed-mode analysis of analog-digital circuits // Proceedings of “Electrical engineering and devices for experimental physics”, Moscow, 1985. -P. 134-138. (in Russian)Google Scholar
  239. 241.
    Bandarenko V.M., Aghmetov B.S., Bilenko V.I. Application of hermitian splines in the numerical realization of logic-electric macromodels // Proceedings of AN USSR. Series “A”, Physical-mathematical and technical sciences. -1983. -N 6. -P. 49-52. (in Russian)Google Scholar
  240. 242.
    Martinyuk V.A., Fedoruk V.G. Logic-electrical analysis algorithm of VLSI // Theses of reports of All-Union Scientific-Technical Conference of. “Automation of design PC and systems”. -Yerevan, 1983. -P. 97-98. (in Russian)Google Scholar
  241. 243.
    Gai S. MOZART: A Concurrent Multilevel Simulator // IEEE Transaction on Computer-Aided Design. -1988. -Vol. 7, No. 9. -P. 1005-1016.Google Scholar
  242. 244.
    Saleh R., Antao B., Singh J. Multilevel and Mixed-Domain Simulation of Analog Circuits and Systems // IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. -1996. -Vol. 15, No. 1. -P. 68-81.Google Scholar
  243. 245.
    Saleh R., Jou S.J. Mixed Mode Simulation and Analog Multilevel Simulation. -Kluwer Academic Publishers, 1994. -320p.Google Scholar
  244. 246.
    Chadha R., Visweswariah C., Chen C.F. Multilevel Mixed-mode A/D Simulator // IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems. -1992. -Vol. 11, No. 5. -P. 575-586.Google Scholar
  245. 247.
    Mayaram K., Chern J.H., Yang P. Algorithms for Transient Three-Dimensional Mixed-Level and Device Simulation // IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems. -1993. -Vol. 12, No. 11. -P. 1714-1726.Google Scholar
  246. 248.
    Cloutier J., Bourgault M., Fauvel S., Roy C., Cerney E. and Gecsei J. An Object-Oriented Mixed-Mode Hierarchical VLSI Simulator // Proceedings of Canadian Conference on VLSI CCVLSI’86. -Montreal, 1986. -P. 203-208.Google Scholar
  247. 249.
    Saleh R., Yang A. Modeling Mixed Systems with Spice 3 // IEEE Circuits & Devices. -1993. -Vol. 1. -P. 7-10.Google Scholar
  248. 250.
    Gorshkov K. The simulation technique for large-scale tree structured interconnects // IEEE Industrial Engineering, Applications and Manufacturing (ICIEAM). -Chelyabinsk, Russia, 2016. -P. 1-6.Google Scholar
  249. 251.
    Melikyan V.Sh. Optimization of timing parameters of digital circuits elements // Elektronika i svyaz, Vol. 4, No 2, Kiev, 1998. -P. 249-253. (in Russian)Google Scholar
  250. 252.
    Melikyan V.Sh., Nazinyan S.M. Power consumption algorithm of digital ICs//Simulation, optimization, control, SEUA, Yerevan, RA, Vol. 4, Yerevan, 2001. -P. 159-166. (in Armenian)Google Scholar
  251. 253.
    Liu C., Li Y., Du Y., Du L., Wang T. Hybrid thermal aware reconfigurable 3D IC with dynamic power gating architecture // IEEE Semiconductor Technology International Conference (CSTIC). -Shanghai, China, 2017. P. 1-3.Google Scholar
  252. 254.
    Jing T., Hong X. A Novel And Efficient Timing-Driven Global Router For Standard Cell Layout Design Based On Critical Network Concept//IEEE International Symposium on Circuits and Systems (ISCAS). -Scottsdale, Arizona, USA, 2002. -P. I165-I168.Google Scholar
  253. 255.
    Liao I.M.J., Su C.F., Chang A.C.Y., Wu A.C.H. A Carry-Select-Adder Optimization Technique for High-Performance Booth-Encoded Wallace-Tree Multipliers // IEEE International Symposium on Circuits and Systems (ISCAS). -Scottsdale, Arizona, 2002. -P. I257-I259.Google Scholar
  254. 256.
    Li Z., Wu W., Hong X. Incremental Placement Algorithm for Wirelength and Congestion Optimization//Chinese Journal of CAD/CG. -2003. -Vol. 15, No. 6. -P. 651-655.Google Scholar
  255. 257.
    Yunfeng W., Jinian B., Qiang W., Heng H. Re-synthesis after Floor-planning for Timing Optimization // IEEE International conference on ASIC (ASICON). -Beijing, China, -2003. -Vol. 1. -P. 212-215.Google Scholar
  256. 258.
    Ekpanyapong M., Balakrishnan K., Nanda V., Lim S.K. Simultaneous Delay and Power Optimization for Multi-level Partitioning and Floorplanning with Retiming // IEEE International Conference on Circuits and Systems. -2004. -P. 756-760.Google Scholar
  257. 259.
    Chang S.C., Marek-Sadowska M., Cheng K.T. Perturb and Simplify: Multi-level Boolean Network Optimizer // IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems. -1996. -Vol. 15, No. 12. -P. 1494-1504.Google Scholar
  258. 260.
    Kannan L.N., Suaris P.R., Fang H.G. A methodology and algorithms for post-placement delay optimization//ACM/IEEE 31st Design Automation Conference. -San Francisco, 1994. -P. 327-332.Google Scholar
  259. 261.
    Huisman L.M. Correlations between Path Delays and the Accuracy of Performance Prediction // IEEE International Test Conference. -Washington, 1998. -P. 801-808.Google Scholar
  260. 262.
    McGeer P.C., Saldanha A., Brayton R.K., Sangiovanni-Vincentelli A.L. Delay Models and Exact Timing Analysis. Logic Synthesis and Optimization. -Kluwer Academic Publishers, 1993. -196p.Google Scholar
  261. 263.
    Lavagno L., Keutzer K., Sangiovanni-Vincentelli A.L. Synthesis of Hazard-Free Asynchronous Circuits with Bounded Wire Delays // IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems. -1995. -Vol. 14, No. 1. -P. 61-86.Google Scholar
  262. 264.
    Saldanha A., Brayton R.K., Sangiovanni-Vincentelli A.L. Circuit Structure Relations to Redundancy and Delay // IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems. -1994. -Vol. 13, No. 7. -P. 875-883.Google Scholar
  263. 265.
    Jiang Y.M., Krstic A., Cheng K.T., Marek-Sadowska M. Post-Layout Logic Restructuring for Performance Optimization // ACM/IEEE 34th Design Automation Conference. -Anaheim, California, 1997. -Vol. 11, No. 4. -P. 241-246.Google Scholar
  264. 266.
    Parodi C.G., Agrawal V.D., Bushnell M.L., Wu S. A Non-Enumerative Path Delay Fault Simulator for Sequential Circuits // IEEE International Test conference. -Atlantic, 1999. -Vol. 15, No. 5. -P. 107-110.Google Scholar
  265. 267.
    Gremoux S., Azemard N., Auvergne D. Algotithms for Path selection: a comparative study. -Kluwer Academic Publisher, 1997. -356p.Google Scholar
  266. 268.
    Hsino M.S. Peak Power Estimation Using Genetic Spot Optimization for Large VLSI Circuits // IEEE Conference Design Automation and Test in Europe (DATE). -Munich, 1999. -P. 175-179.Google Scholar
  267. 269.
    Balkir S., Dundar G., Ogrenci A.S. Analog VLSI Design Automation. -CRC Press, 2003. -275p.Google Scholar
  268. 270.
    Kankkunen A., Andersson M., Valtonen M. MOSFET Level 3 Model in APLAC. Report CT‑9. -Finland, 1991. -23p.Google Scholar
  269. 271.
    Bagdasarian H., Melikyan V., Nshanian M., Uzunoglu N. Computer modeling of fiber-optic communication systems // Trans black sea region symposium on applied electromagnetism. -Athens, 1996. -P.OPSY 9.Google Scholar
  270. 272.
    Gala K., Zolotov V., Panda R. On-chip inductance modeling and analysis // ACM/IEEE 37th Design Automation Conference. -Los Angeles, 2000. -P. 63-68.Google Scholar
  271. 273.
    Tsividis Y. Operation and Modeling of the MOS Transistor. -New York: McGraw-Hill, 1999. -356p.Google Scholar
  272. 274.
    Ciletti M.D. Advanced Digital Design with the Verilog HDL.-Prentice Hall, 2003. -982p.Google Scholar
  273. 201.
    Melikyan V., Shahinyan T., Melikyan H. A digital cell macromodel considering radiation affect//Manual of Engineering Academy of Armenia. Vol. 1. No. 3, Yerevan, 2004.-P. 585-588. (in Armenian)Google Scholar
  274. 275.
    Kleitz W. Digital Electronic with VHDL.-Prentice Hall, 2004. -960p.Google Scholar
  275. 276.
    Melikyan V. The Simulation of Digital Circuits Taking into Account the Destabilizing Factors // Fourth national conference on Semiconductor Microelectronics. -Tsakhkadzor, 2003. -P. 240-243.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Vazgen Melikyan
    • 1
  1. 1.Director of Educational DepartmentSynopsys Armenia CJSCYerevanArmenia

Personalised recommendations