Advertisement

Radiation Exposure and Safety

  • Kully Sandhu
  • Gurbir Bhatia
  • James Nolan
Chapter

Abstract

Coronary angiography is a widely available diagnostic and therapeutic modality. Radiation exposure is set to increase as a result of greater complexity of coronary and structural cases now being undertaken. Therefore all cardiologists need to be aware of not only the risks of radiation but also strategies to minimize radiation exposure for both patients and catheter laboratory staff.

This chapter aims to provide a brief overview of basic radiation physics, highlight associated risks of radiation, and emphasize strategies to minimize radiation exposure.

Keywords

Coronary angiography Basic radiation principles X-rays Adverse effects Radiation safety Radiation protection 

Bibliography

  1. Abdelaal E, Plourde G, MacHaalany J, Arsenault J, Rimac G, Dery JP, et al. Effectiveness of low rate fluoroscopy at reducing operator and patient radiation dose during transradial coronary angiography and interventions. JACC Cardiovasc Interv. 2014;7(5):567–74.CrossRefPubMedGoogle Scholar
  2. Agarwal S, Parashar A, Bajaj NS, Khan I, Ahmad I, Heupler FA Jr, et al. Relationship of beam angulation and radiation exposure in the cardiac catheterization laboratory. JACC Cardiovasc Interv. 2014;7(5):558–66.CrossRefPubMedGoogle Scholar
  3. Authors on behalf of ICRP, Stewart FA, Akleyev AV, Hauer-Jensen M, Hendry JH, Kleiman NJ, et al. ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs—threshold doses for tissue reactions in a radiation protection context. Ann ICRP. 2012;41(1–2):1–322.Google Scholar
  4. Cantor WJ, Puley G, Natarajan MK, Dzavik V, Madan M, Fry A, et al. Radial versus femoral access for emergent percutaneous coronary intervention with adjunct glycoprotein IIb/IIIa inhibition in acute myocardial infarction—the RADIAL-AMI pilot randomized trial. Am Heart J. 2005;150(3):543–9.CrossRefPubMedGoogle Scholar
  5. Chase AJ, Fretz EB, Warburton WP, Klinke WP, Carere RG, Pi D, et al. Association of the arterial access site at angioplasty with transfusion and mortality: the M.O.R.T.A.L study (Mortality Benefit of Reduced Transfusion after percutaneous coronary intervention via the arm or leg). Heart. 2008;94(8):1019–25.CrossRefPubMedGoogle Scholar
  6. Delewi R, Hoebers LP, Ramunddal T, Henriques JP, Angeras O, Stewart J, et al. Clinical and procedural characteristics associated with higher radiation exposure during percutaneous coronary interventions and coronary angiography. Circ Cardiovasc Interv. 2013;6(5):501–6.CrossRefPubMedGoogle Scholar
  7. Hamada N, Fujimichi Y, Iwasaki T, Fujii N, Furuhashi M, Kubo E, et al. Emerging issues in radiogenic cataracts and cardiovascular disease. J Radiat Res. 2014;55(5):831–46.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Hart D, Hillier MC, Shrimpton PC. Doses to patients from radiographic and fluoroscopic x-ray imaging procedures in the UK – 2010 review. HPA-CRCE-034. 2012. http://www.hpa.org.uk/Publications/Radiation/CRCEScientificAndTechnicalReportSeries/HPACRCE034.
  9. Jolly SS, Amlani S, Hamon M, Yusuf S, Mehta SR. Radial versus femoral access for coronary angiography or intervention and the impact on major bleeding and ischemic events: a systematic review and meta-analysis of randomized trials. Am Heart J. 2009;157(1):132–40.CrossRefPubMedGoogle Scholar
  10. Jolly SS, Cairns J, Niemela K, Steg PG, Natarajan MK, Cheema AN, et al. Effect of radial versus femoral access on radiation dose and the importance of procedural volume: a substudy of the multicenter randomized RIVAL trial. JACC Cardiovasc Interv. 2013;6(3):258–66.CrossRefPubMedGoogle Scholar
  11. Koenig TR, Wolff D, Mettler FA, Wagner LK. Skin injuries from fluoroscopically guided procedures: part 1, characteristics of radiation injury. AJR Am J Roentgenol. 2001a;177(1):3–11.CrossRefPubMedGoogle Scholar
  12. Koenig TR, Mettler FA, Wagner LK. Skin injuries from fluoroscopically guided procedures: part 2, review of 73 cases and recommendations for minimizing dose delivered to patient. AJR Am J Roentgenol. 2001b;177(1):13–20.CrossRefPubMedGoogle Scholar
  13. Kuipers G, Delewi R, Velders XL, Vis MM, van der Schaaf RJ, Koch KT, et al. Radiation exposure during percutaneous coronary interventions and coronary angiograms performed by the radial compared with the femoral route. JACC Cardiovasc Interv. 2012;5(7):752–7.CrossRefPubMedGoogle Scholar
  14. Kuon E. Radiation exposure in invasive cardiology. Heart. 2008;94(5):667–74.CrossRefPubMedGoogle Scholar
  15. Kuon E, Schmitt M, Dahm JB. Significant reduction of radiation exposure to operator and staff during cardiac interventions by analysis of radiation leakage and improved lead shielding. Am J Cardiol. 2002;89(1):44–9.CrossRefPubMedGoogle Scholar
  16. Kuon E, Birkel J, Schmitt M, Dahm JB. Radiation exposure benefit of a lead cap in invasive cardiology. Heart. 2003;89(10):1205–10.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kuon E, Dahm JB, Empen K, Robinson DM, Reuter G, Wucherer M. Identification of less-irradiating tube angulations in invasive cardiology. J Am Coll Cardiol. 2004;44(7):1420–8.CrossRefPubMedGoogle Scholar
  18. Lange HW, von Boetticher H. Reduction of operator radiation dose by a pelvic lead shield during cardiac catheterization by radial access: comparison with femoral access. JACC Cardiovasc Interv. 2012;5(4):445–9.CrossRefPubMedGoogle Scholar
  19. Loomba RS, Rios R, Buelow M, Eagam M, Aggarwal S, Arora RR. Comparison of contrast volume, radiation dose, fluoroscopy time, and procedure time in previously published studies of rotational versus conventional coronary angiography. Am J Cardiol. 2015;116(1):43–9.CrossRefPubMedGoogle Scholar
  20. Meinel FG, Nance JW Jr, Harris BS, De Cecco CN, Costello P, Schoepf UJ. Radiation risks from cardiovascular imaging tests. Circulation. 2014;130(5):442–5.CrossRefPubMedGoogle Scholar
  21. Musallam A, Volis I, Dadaev S, Abergel E, Soni A, Yalonetsky S, et al. A randomized study comparing the use of a pelvic lead shield during trans-radial interventions: threefold decrease in radiation to the operator but double exposure to the patient. Catheter Cardiovasc Interv. 2015;85(7):1164–70.CrossRefPubMedGoogle Scholar
  22. Olcay A, Guler E, Karaca IO, Omaygenc MO, Kizilirmak F, Olgun E, et al. Comparison of fluoro and cine coronary angiography: balancing acceptable outcomes with a reduction in radiation dose. J Invasive Cardiol. 2015;27(4):199–202.PubMedGoogle Scholar
  23. Pancholy SB, Joshi P, Shah S, Rao SV, Bertrand OF, Patel TM. Effect of vascular access site choice on radiation exposure during coronary angiography: the REVERE Trial (Randomized Evaluation of Vascular Entry Site and Radiation Exposure). JACC Cardiovasc Interv. 2015;8(9):1189–96.CrossRefPubMedGoogle Scholar
  24. Pierce DA, Preston DL. Radiation-related cancer risks at low doses among atomic bomb survivors. Radiat Res. 2000;154(2):178–86.CrossRefPubMedGoogle Scholar
  25. Plourde G, Pancholy SB, Nolan J, Jolly S, Rao SV, Amhed I, et al. Radiation exposure in relation to the arterial access site used for diagnostic coronary angiography and percutaneous coronary intervention: a systematic review and meta-analysis. Lancet. 2015;386(10009):2192–203.CrossRefPubMedGoogle Scholar
  26. Politi L, Biondi-Zoccai G, Nocetti L, Costi T, Monopoli D, Rossi R, et al. Reduction of scatter radiation during transradial percutaneous coronary angiography: a randomized trial using a lead-free radiation shield. Catheter Cardiovasc Interv. 2012;79(1):97–102.CrossRefPubMedGoogle Scholar
  27. Preston DL, Ron E, Tokuoka S, Funamoto S, Nishi N, Soda M, et al. Solid cancer incidence in atomic bomb survivors: 1958-1998. Radiat Res. 2007;168(1):1–64.CrossRefPubMedGoogle Scholar
  28. Preston DL, Shimizu Y, Pierce DA, Suyama A, Mabuchi K. Studies of mortality of atomic bomb survivors. Report 13: solid cancer and noncancer disease mortality: 1950-1997. 2003. Radiat Res. 2012;178(2):AV146–72.CrossRefPubMedGoogle Scholar
  29. Reeves RR, Ang L, Bahadorani J, Naghi J, Dominguez A, Palakodeti V, et al. Invasive cardiologists are exposed to greater left sided cranial radiation: the BRAIN Study (Brain Radiation Exposure and Attenuation During Invasive Cardiology Procedures). JACC Cardiovasc Interv. 2015;8(9):1197–206.CrossRefPubMedGoogle Scholar
  30. Roguin A, Goldstein J, Bar O, Goldstein JA. Brain and neck tumors among physicians performing interventional procedures. Am J Cardiol. 2013;111(9):1368–72.CrossRefPubMedGoogle Scholar
  31. Tsapaki V, Kottou S, Vano E, Parviainen T, Padovani R, Dowling A, et al. Correlation of patient and staff doses in interventional cardiology. Radiat Prot Dosimetry. 2005;117(1–3):26–9.CrossRefPubMedGoogle Scholar
  32. Vano E, Gonzalez L. Accreditation in radiation protection for cardiologists and interventionalists. Radiat Prot Dosimetry. 2005;117(1–3):69–73.CrossRefPubMedGoogle Scholar
  33. Vano E, Ubeda C, Leyton F, Miranda P, Gonzalez L. Staff radiation doses in interventional cardiology: correlation with patient exposure. Pediatr Cardiol. 2009;30(4):409–13.CrossRefPubMedGoogle Scholar
  34. Yoshinaga S, Mabuchi K, Sigurdson AJ, Doody MM, Ron E. Cancer risks among radiologists and radiologic technologists: review of epidemiologic studies. Radiology. 2004;233(2):313–21.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Royal Stoke University HospitalUniversity Hospitals of North Midlands NHS TrustStoke-On-TrentUK
  2. 2.Birmingham Heartlands Hospital, University Hospitals Birmingham NHS Foundation TrustBirminghamUK

Personalised recommendations