Advertisement

Adjunctive Technologies (Rotablation, Excimer Laser, Aspiration Thrombectomy, Distal Embolic Protection)

  • Michael S. Lee
  • Jeremy Kong
Chapter

Abstract

Rotational atherectomy improves the procedural success rate of percutaneous coronary intervention (PCI) in heavily calcified lesions, but does not decrease restenosis. Late lumen loss was higher in patients treated with rotational atherectomy followed by drug-eluting stenting compared with patients without rotational atherectomy. Pericardiocentesis kits and covered stents should be readily available given the risk of coronary perforation.

Excimer laser coronary atherectomy improves procedural success but does not decrease restenosis in moderately calcified lesions. Excimer laser coronary atherectomy can be used in situations that are difficult to treat including in-stent restenosis, suboptimal stent expansion, and subtotally occluded lesions uncrossable by exchange catheters.

Routine use of thrombectomy for acute myocardial infarction (AMI) is not recommended. The benefits of up-front manual aspiration thrombectomy in AMI remain questionable, but the procedure may become necessary in bailout situations.

Embolic protection devices can capture liberated debris during saphenous vein graft (SVG) intervention to decrease the risk of distal embolization and periprocedural MI.

Embolic protection devices do not appear to protect against no-reflow or improve clinical outcomes in PCI of native coronary vessels. Embolic protection devices provide clinical benefit in SVG intervention but remain underutilized.

Keywords

Percutaneous coronary intervention Coronary artery calcification Thrombus Rotational atherectomy Excimer laser coronary atherectomy Laser angioplasty Aspiration thrombectomy Embolic protection device Saphenous vein graft 

Notes

Disclosure Statement

No conflicts of interest to report.

References

  1. 1.
    Higgins CL, Marvel SA, Morrisett JD. Quantification of calcification in atherosclerotic lesions. Arterioscler Thromb Biol. 2005;25:1567–76.CrossRefGoogle Scholar
  2. 2.
    Bezerra H, Guagliumi G, Valescchi O, et al. Unraveling the lack of neointimal hyperplasia detected by intravascular ultrasound using optical coherence tomography: lack of spatial resolution or a true biological effect? J Am Coll Cardiol. 2009;53(Suppl A):90A.Google Scholar
  3. 3.
    Witzenbichler B, Maehara A, Weisz G, et al. Relationship between intravascular ultrasound guidance and clinical outcomes after drug-eluting stents: the ADAPT-DES Study. American Heart Association Scientific Sessions. Dallas, TX. 2013.Google Scholar
  4. 4.
    Tuzcu EM, Berkalp B, De Franco A, et al. The dilemma of diagnosing coronary calcification: angiography versus intravascular ultrasound. J Am Coll Cardiol. 1996;27:832–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Mintz G, Popma J, Pichard A, et al. Patterns of calcification in coronary artery disease. A statistical analysis of intravascular ultrasound and coronary angiography in 1155 lesions. Circulation. 1995;91:1959–65.CrossRefPubMedGoogle Scholar
  6. 6.
    Ziada KM, Tuzcu EM, De Franco AC, et al. Intravascular ultrasound assessment of the prevalence and causes of angiographic “haziness” following high-pressure coronary stenting. Am J Cardiol. 1997;80:116.CrossRefPubMedGoogle Scholar
  7. 7.
    Yock P, Fitzgerald P, Popp R. Intravascular ultrasound. Sci Am Sci Med. 1995;2:68.Google Scholar
  8. 8.
    Fitzgerald PJ, St Goar FG, Connolly AJ, et al. Intravascular ultrasound imaging of coronary arteries. Is three layers the norm? Circulation. 1992;86:154–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Science. 1991;254:1178.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Mintz GS, Nissen SE, Anderson WD, et al. American College of Cardiology clinical expert consensus document on standards for acquisition, measurement and reporting of intravascular ultrasound studies (IVUS). A report of the American College of Cardiology task force on clinical expert consensus documents. J Am Coll Cardiol. 2001;37:1478–92.CrossRefPubMedGoogle Scholar
  11. 11.
    Prati F, Regar E, Mintz GS, et al. Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. Eur Heart J. 2010;31(4):401.CrossRefPubMedGoogle Scholar
  12. 12.
    Terashima M, Kaneda H, Suzuki T. The role of optical coherence tomography in coronary intervention. Korean J Intern Med. 2012;1-12(53):27.Google Scholar
  13. 13.
    Bezerra HG, Costa MA, Guagliumi G, et al. Intracoronary optical coherence tomography: a comprehensive review. J Am Coll Cardiol Interv. 2009;2(11):1035–46.CrossRefGoogle Scholar
  14. 14.
    Bouma BE, Tearney GJ, Yabushita H, et al. Evaluation of intracoronary stenting by intravascular optical coherence tomography. Heart. 2003;89:317.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Serruys PW, Ormiston JA, Onuma Y, et al. A bioabsorbable everolimus-eluting coronary stent system (ABSORB): 2-year outcomes and results from multiple imaging methods. Lancet. 2009;373:897–910.CrossRefPubMedGoogle Scholar
  16. 16.
    Kubo T, Imanishi T, Kitabata H, et al. Comparison of vascular response after sirolimus-eluting stent implantation between patients with unstable and stable angina pectoris: a serial optical coherence tomography study. J Am Coll Cardiol Imaging. 2008;1:475–84.CrossRefGoogle Scholar
  17. 17.
    Yamaguchi T, Terashima M, Akasaka T, et al. Safety and feasibility of an intravascular optical coherence tomography image wire system in the clinical setting. Am J Cardiol. 2008;101:562–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Levine GN, Bates ER, Blankenship JC, et al. 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. J Am Coll Cardiol. 2011;58:e44–122.CrossRefPubMedGoogle Scholar
  19. 19.
    Tomey M, Kini A, Sharma S. Current status of rotational atherectomy. J Am Coll Cardiol Intv. 2014;7(4):345–53.CrossRefGoogle Scholar
  20. 20.
    Akkus NI, Abdulbaki A, Jimenez E, et al. Atherectomy devices: technology update. Med Devices. 2015;8:1–10.Google Scholar
  21. 21.
    Lee MS, Kim MH, Rha SW. Alternative rota-flush solution for patients with severe coronary artery calcification who undergo rotational atherectomy. J Invasive Cardiol. 2017;29:25–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Lee MS, Weisner P, Rha SW. Novel technique of advancing the rotational atherectomy device: “single-operator” technique. J Invasive Cardiol. 2016;28(5):183–6.PubMedGoogle Scholar
  23. 23.
    Baim DS. Coronary angioplasty. In: Baim DS, Grossman W, editors. Cardiac catheterization, angiography and intervention. Baltimore, MD: Williams & Wilkins; 1996. p. 551.Google Scholar
  24. 24.
    O’Neill WW, Kleiman NS, Moses J, et al. A prospective, randomized clinical trial of hemodynamic support with Impella 2.5 versus intra-aortic balloon pump in patients undergoing high-risk percutaneous coronary intervention: the PROTECT II study. Circulation. 2012;126:1717–27.CrossRefPubMedGoogle Scholar
  25. 25.
    Reifart N, Vandormael M, Krajcar M, et al. Randomized comparisons of angioplasty of complex coronary lesions at a single center. Excimer laser, rotational atherectomy, and balloon angioplasty comparison (ERBAC) study. Circulation. 1997;96:91–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Dill T, Dietz U, Hamm CW, et al. A randomized comparison of balloon angioplasty versus rotational atherectomy in complex coronary lesions (COBRA study). Eur Heart J. 2000;21:1759–66.CrossRefPubMedGoogle Scholar
  27. 27.
    Abdel-Wahab M, Richardt G, Joachim Buttner H, et al. High-speed rotational atherectomy before paclitaxel-eluting stent implantation in complex calcified coronary lesions: the randomized ROTAXUS (Rotational Atherectomy Prior to Taxus Stent Treatment for Complex Native Coronary Artery Disease) trial. J Am Coll Cardiol Intv. 2013;6:10–9.CrossRefGoogle Scholar
  28. 28.
    de Waha S, Allali A, Buttner HJ, Toelg R, Geist V, Neumann FJ, Khattab AA, Richardt G, Abdel-Wahab M. Rotational atherectomy before paclitaxel-eluting stent implantation in complex calcified coronary lesions: two-year clinical outcome of the randomized ROTAXUS trial. Catheter Cardiovasc Interv. 2016;87(4):691–700.CrossRefPubMedGoogle Scholar
  29. 29.
    Whitlow PL, Bass TA, Kipperman M, et al. Results of the study to determine rotablator and transluminal angioplasty strategy (STRATAS). Am J Cardiol. 2001;87:699–705.CrossRefPubMedGoogle Scholar
  30. 30.
    Clavijo LC, Steinberg DH, Torguson R, et al. Sirolimus-eluting stents and calcified coronary lesions: clinical outcomes of patients treated with and without rotational atherectomy. Catheter Cardiovasc Interv. 2006;68:873–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Eggebrecht H, Oldenburg O, Dirsch O, et al. Potential embolization by atherosclerotic debris dislodged from aortic wall during cardiac catheterization: histological and clinical findings in 7,621 patients. Catheter Cardiovasc Interv. 2000;49:389–94.CrossRefPubMedGoogle Scholar
  32. 32.
    Wang X, Nie SP. The coronary slow flow phenomenon: characteristics, mechanisms and implications. Cardiovasc Diagn Ther. 2011;1(1):37–43.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Walton AS, Pomerantsev EV, Oesterle SN, et al. Outcome of narrowing related side branches after high-speed rotational atherectomy. Am J Cardiol. 1996;77:370.CrossRefPubMedGoogle Scholar
  34. 34.
    Sulimov DS, Abdel-Wahab M, Toelg R, et al. Stuck rotablator: the nightmare of rotational atherectomy. Euro Interv. 2013;9:251–8.Google Scholar
  35. 35.
    Ambrosini V, Sorropago G, Laurenzano E, Golino L, Casafina A, Schiano V, Gabrielli G, Ettori F, Chizzola G, Bernardi G, Spedicato L, Armigliato P, Spampanato C, Furegato M. Early outcome of high energy laser (Excimer) facilitated coronary angioplasty ON hARD and complex calcified and balloon-resistant coronary lesions: LEONARDO study. Cardiovasc Revasc Med. 2015;16:141–6.CrossRefPubMedGoogle Scholar
  36. 36.
    Bilodeau L, Fretz EB, Taeymans Y, Koolen J, Taylor K, Hilton DJ. Novel use of a high-energy laser catheter for calcified and complex coronary artery lesions. Catheter Cardiovasc Interv. 2004;62:155–61.CrossRefPubMedGoogle Scholar
  37. 37.
    Topaz O, Safian RD. Eximer laser coronary angioplasty. In: Safian RD, Freed MS, editors. Manual of interventional cardiology. 3rd ed. Royal Oaks, MI: Physicians Press; 2001. p. 681–91.Google Scholar
  38. 38.
    Fernandez JP, Hobson AR, McKenzie D, et al. Beyond the balloon: excimer coronary laser atherectomy used alone or in combination with rotational atherectomy in the treatment of chronic total occlusions, non-crossable and nonexpansible coronary lesions. EuroIntervention. 2013;9:243–50.CrossRefPubMedGoogle Scholar
  39. 39.
    McKenzie DB, Talwar S, Jokhi PP, et al. How should I treat severe coronary artery calcification when it is not possible to inflate a balloon or deliver a RotaWire? EuroIntervention. 2011;6:779–83.CrossRefPubMedGoogle Scholar
  40. 40.
    Fernandez JP, Hobson AR, McKenzie D, et al. Treatment of calcific coronary stenosis with the use of excimer laser coronary atherectomy and rotational atherectomy. Int J Cardiol. 2010;2:801–6.Google Scholar
  41. 41.
    Papaioannou T, Yadegar D, Vari S, et al. Excimer laser (308 nm) recanalization of in-stent restenosis: thermal considerations. Lasers Med Sci. 2001;16:90–100.CrossRefPubMedGoogle Scholar
  42. 42.
    Burris N, Lippincott RA, Elfe A, et al. Effects of 308 nanometer excimer laser energy on 316 L stainless-steel stents: implications for laser atherectomy of in-stent restenosis. J Invasive Cardiol. 2000;12:555–9.PubMedGoogle Scholar
  43. 43.
    Mehran R, Mintz GS, Satler LF, et al. Treatment of in-stent restenosis with excimer laser coronary angioplasty: mechanisms and results compared with PTCA alone. Circulation. 1997;96:2183–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Rawlins J, Sambu N, O’Kane P. Strategies for the management of massive intra-coronary thrombus in acute myocardial infarction. Heart. 2013;99:510.CrossRefPubMedGoogle Scholar
  45. 45.
    Bittl JA. Clinical results with excimer laser coronary angioplasty. Semin Interv Cardiol. 1996;1:129–34.PubMedGoogle Scholar
  46. 46.
    Mintz GS, Kovach JA, Javier SP, et al. Mechanisms of lumen enlargement after excimer laser coronary angioplasty. An intravascular ultrasound study. Circulation. 1995;92:3408–14.CrossRefPubMedGoogle Scholar
  47. 47.
    Abela GS, Crea F, Smith W, et al. In vitro effects of argon laser radiation on blood: quantitative and morphologic analysis. J Am Coll Cardiol. 1985;5:231–7.CrossRefPubMedGoogle Scholar
  48. 48.
    Grundfest WS, Litvack F, Forrester JS, et al. Laser ablation of human atherosclerotic plaque without adjacent tissue injury. J Am Coll Cardiol. 1985;5:929–33.CrossRefPubMedGoogle Scholar
  49. 49.
    Geschwind HJ, Boussignac G, Teisseire B, et al. Conditions for effective Nd-YAG laser angioplasty. Br Heart J. 1984;52:484–9.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Biamino G. The excimer laser: science fiction fantasy or practical tool? J Endovasc Ther. 2004;11(Suppl 2):II207–22.CrossRefPubMedGoogle Scholar
  51. 51.
    Topaz O, Ebersole D, et al. Excimer laser in myocardial infarction: a comparison between STEMI patients with established Q-wave versus patients with non-SEMI (non-Q). Lasers Med Sci. 2008;23(1):1–10.PubMedGoogle Scholar
  52. 52.
    Taylor K, Reiser C. Next generation catheters for excimer laser coronary angioplasty. Lasers Med Sci. 2001;16:133–40.CrossRefPubMedGoogle Scholar
  53. 53.
    Isner JM, Pickerin JG, Mosseri M. Laser-induced dissections: pathogenesis and implications for therap. J Am Coll Cardiol. 1992;19:1619–21.CrossRefPubMedGoogle Scholar
  54. 54.
    Van Leeuwen TG, Meertens JH, Velema E, et al. Intraluminal vapor bubble induced by excimer laser pulse causes microsecond arterial dilation and invagination leading to extensive wall damage in the rabbit. Circulation. 1993;87:1258–63.CrossRefPubMedGoogle Scholar
  55. 55.
    Baumbach A, Bittl JA, Fleck E, Geschwind HJ, Sanborn TA, Tcheng JK, Karch KR. Acute complications of excimer laser coronary angioplasty: a detailed analysis of multicenter results. Coinvestigators of the U.S. and European Percutaenous Excimer Laser Coronary Angioplasty (PELCA) Registries. J Am Coll Cardiol. 1994;23(6):1305–13.CrossRefPubMedGoogle Scholar
  56. 56.
    Rezkalla SH, Kloner RA. Coronary no-reflow phenomenon. Curr Treat Options Cardiovasc Med. 2005;7:75.CrossRefPubMedGoogle Scholar
  57. 57.
    Eeckhout E, Kern MJ. The coronary no-reflow phenomenon: a review of mechanisms and therapies. Eur Heart J. 2001;22:729.CrossRefPubMedGoogle Scholar
  58. 58.
    Henriques JP, Zijlstra F, Ottervanger JP, et al. Incidence and clinical significance of distal embolization during primary angioplasty for acute myocardial infarction. Eur Heart J. 2002;23:1112.CrossRefPubMedGoogle Scholar
  59. 59.
    Ahn SG, Choi HH, Lee JK, Lee JW, Youn YJ, Yoo SY, Cho BR, Lee SH, Yoon J. The impact of initial and residual thrombus burden on the no-reflow phenomenon in patients with ST-segment elevation myocardial infarction. Coron Artery Dis. 2015;26(3):245–53.CrossRefPubMedGoogle Scholar
  60. 60.
    Kishi T, Yamada A, Okamatsu S, Sunagawa K. Percutaneous coronary arterial thrombectomy for acute myocardial infarction reduces no-reflow phenomenon and protects against left ventricular remodeling related to the proximal left anterior descending and right coronary artery. Int Heart J. 2007;48(3):287–302.CrossRefPubMedGoogle Scholar
  61. 61.
    Sianos G, Papafaklis MI, Daemen J, et al. Angiographic stent thrombosis after routine use of drug-eluting stents in ST-segment elevation myocardial infarction: the importance of thrombus burden. J Am Coll Cardiol. 2007;50(7):573–83.CrossRefPubMedGoogle Scholar
  62. 62.
    Levine GN, Bates ER, Blankenship JC, et al. 2015 ACC/AHA/SCAI Focused Update on Primary Percutaneous Coronary Intervention for Patients With ST-Elevation Myocardial Infarction: An Update of the 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention and the 2013 ACCF/AHA Guideline for the Management of ST-Elevation Myocardial Infarction. J Am Coll Cardiol. 2016;67:1235.CrossRefPubMedGoogle Scholar
  63. 63.
    Levine GN. 2015 ACC/AHA/SCAI focused update on primary percutaneous coronary intervention. J Am Coll Cardiol. 2016;67:12135.Google Scholar
  64. 64.
    Svilaas T, Vlaar PJ, van der Horst IC, et al. Thrombus aspiration during primary percutaneous coronary intervention. N Engl J Med. 2008;358:557.CrossRefPubMedGoogle Scholar
  65. 65.
    Vlaar PJ, Svilaas T, van der Horst IC, et al. Cardiac death and reinfarction after 1 year in the Thrombus Aspiration during Percutaneous coronary intervention in Acute myocardial infarction Study (TAPAS): a 1-year follow-up study. Lancet. 2008;371(9628):1915–20.CrossRefPubMedGoogle Scholar
  66. 66.
    Frobert O, Lagerqvist B, Olivecrona GK, et al. Thrombus aspiration during ST-segment elevation myocardial infarction. N Engl J Med. 2013;369:1587.CrossRefPubMedGoogle Scholar
  67. 67.
    Lagerqvist B, Frobert O, Olivecrona GK, et al. Outcomes 1 year after thrombus aspiration for myocardial infarction. N Engl J Med. 2014;371:1111.CrossRefPubMedGoogle Scholar
  68. 68.
    Jolly SS, Cairns JA, Yusuf S, et al. Randomized trial of primary PCI with or without routine manual thrombectomy. N Engl J Med. 2015;372:1389.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Jolly SS, Cairns JA, et al. Outcomes after thrombus aspiration for ST elevation myocardial infarction: 1-year follow-up of the prospective randomized TOTAL trial. Lancet. 2016 Jan 9;387(10014):127–35.CrossRefPubMedGoogle Scholar
  70. 70.
    Ali A, Cox D, Dib N, et al. Rheolytic thrombectomy with percutaneous coronary intervention for infarct size reduction in acute myocardial infarction: 30-day results from a multicenter randomized study. J Am Coll Cardiol. 2006;48(2):244–52.CrossRefPubMedGoogle Scholar
  71. 71.
    Migliorini A, Stabile A, Rodriguez AE, et al. Comparison of AngioJet rheolytic thrombectomy before direct infarct artery stenting with direct stenting alone in patients with acute myocardial infarction. The JETSTENT trial. J Am Coll Cardiol. 2010;56(16):1298–306.CrossRefPubMedGoogle Scholar
  72. 72.
    Gibson CM, Cannon CP, Murphy SA, Ryan KA, Mesley R, Marble SJ, et al. Relationship of TIMI myocardial perfusion grade to mortality after administration of thrombolytic drugs. Circulation. 2000;101(2):125–30.CrossRefPubMedGoogle Scholar
  73. 73.
    Kumbhani DJ, Bavry AA, Desai MY, et al. Role of aspiration and mechanical thrombectomy in patients with acute myocardial infarction undergoing primary angioplasty: an updated meta-analysis of randomized trials. J Am Coll Cardiol. 2014;62:1409.CrossRefGoogle Scholar
  74. 74.
    Ali A, Cox D, Dib N, et al. Rheolytic thrombectomy with percutaneous coronary intervention for infarct size redution in acute myocardial infarction: 30-day results from a multicenter randomized study. J Am Coll Cardiol. 2006;48:244.CrossRefPubMedGoogle Scholar
  75. 75.
    Bavry AA, Kumbhani DJ, Bhatt DL. Role of adjunctive thrombectomy and embolic protection devices in acute myocardial infarction: a comprehensive meta-analysis of randomized trials. Eur Heart J. 2008;29:2989–3001.CrossRefPubMedGoogle Scholar
  76. 76.
    Stone GW, Webb J, Cox DA, et al. Distal microcirculatory protection during percutaneous coronary intervention in acute ST-segment elevation myocardial infarction: a randomized controlled trial. JAMA. 2005;293:1063.CrossRefPubMedGoogle Scholar
  77. 77.
    Gick M, Jander N, Bestehorn HP, et al. Randomized evaluation of the effects of filter-based distal protection on myocardial perfusion and infarct size after primary percutaneous catheter intervention in myocardial infarction with and without ST-segment elevation. Circulation. 2005;112:1462.CrossRefPubMedGoogle Scholar
  78. 78.
    Kelbaek H, Terkelsen CJ, Helqvist S, et al. Randomized comparison of distal protection versus conventional treatment in primary percutaneous coronary intervention: the drug elution and distal protection in ST-elevation myocardial infarction (DEDICATION) trial. J Am Coll Cardiol. 2008;51:899.CrossRefPubMedGoogle Scholar
  79. 79.
    Kaltoft A, Kelbaek H, Kløvgaard L, Terkelsen CJ, Clemmensen P, Helqvist S, Lassen JF, Thuesen L. Increased rate of stent thrombosis and target lesion revascularization after filter protection in primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: 15-month follow-up of the DEDICATION (Drug Elution and Distal Protection in ST Elevation Myocardial Infarction) trial. J Am Coll Cardiol. 2010;55:867–71.CrossRefPubMedGoogle Scholar
  80. 80.
    White CJ, Ramee SR, Collins TJ, Mesa JE, Jain A. Percutaneous angioscopy of saphenous vein coronary bypass grafts. J Am Coll Cardiol. 1993;21:1181–5.CrossRefPubMedGoogle Scholar
  81. 81.
    Silva JA, White CJ, Collins TJ, Ramee SR. Morphologic comparison of atherosclerotic lesions in native coronary arteries and saphenous vein graphs with intracoronary angioscopy in patients with unstable angina. Am Heart J. 1998;136:156–63.CrossRefPubMedGoogle Scholar
  82. 82.
    Stone GW, Rogers C, Hermiller J, et al. Randomized comparison of distal protection with a filter-based catheter and a balloon occlusion and aspiration system during percutaneous intervention of diseased saphenous vein aorto-coronary bypass grafts. Circulation. 2003;108:548–53.CrossRefPubMedGoogle Scholar
  83. 83.
    Baim DS, Wahr D, George B, et al. Randomized trial of a distal embolic protection device during percutaneous intervention of saphenous vein aorto-coronary bypass grafts. Circulation. 2002;105:1285.CrossRefPubMedGoogle Scholar
  84. 84.
    Carrozza JP Jr, Mumma M, Breall JA, et al. Randomized evaluation of the TriActiv balloon-protection flush and extraction system for the treatment of saphenous vein graft disease. J Am Coll Cardiol. 2005;46:1677.CrossRefPubMedGoogle Scholar
  85. 85.
    Ashby DT, Dangas G, Aymong EA, et al. Effect of percutaneous coronary interventions for in-stent restenosis in degenerated saphenous vein grafts without distal embolic protection. J Am Coll Cardiol. 2003;41:749.CrossRefPubMedGoogle Scholar
  86. 86.
    Mauri L, Cox D, Hermiller J, et al. The PROXIMAL trial: proximal protection during saphenous vein graft intervention using the proxis embolic protection system: a randomized, prospective, multicenter clinical trial. J Am Coll Cardiol. 2007;50:1442.CrossRefPubMedGoogle Scholar
  87. 87.
    Mauri L, Rogers C, Baim DS. Devices for distal protection during percutaneous coronary revascularization. Circulation. 2006;113:2651–6.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of CardiologyUCLA Medical CenterLos AngelesUSA

Personalised recommendations