Advertisement

Computational Analysis of Pelvic Floor Dysfunction

  • Aroj Bhattarai
  • Ralf Frotscher
  • Manfred StaatEmail author
Chapter
Part of the Lecture Notes in Computational Vision and Biomechanics book series (LNCVB, volume 29)

Abstract

Pelvic floor dysfunction (PFD) is characterized by the failure of the levator ani (LA) muscle to maintain the pelvic hiatus, resulting in the descent of the pelvic organs below the pubococcygeal line. This chapter adopts the modified Humphrey material model to consider the effect of the muscle fiber on passive stretching of the LA muscle. The deformation of the LA muscle subjected to intra-abdominal pressure during Valsalva maneuver is compared with the magnetic resonance imaging (MRI) examination of a nulliparous female. Numerical result shows that the fiber-based Humphrey model simulates the muscle behavior better than isotropic constitutive models. Greater posterior movement of the LA muscle widens the levator hiatus due to lack of support from the anococcygeal ligament and the perineal structure as a consequence of birth-related injury and aging. Old and multiparous females with uncontrolled urogenital and rectal hiatus tend to develop PFDs such as prolapse and incontinence.

Keywords

Pelvic muscle Muscle fibers Passive stretching Pelvic floor dysfunction 

Notes

Acknowledgements

Open image in new window

The two first authors have been funded by the German Federal Ministry of Education and Research through the FHprofUnt project “BINGO”, grant number 03FH073PX2.

References

  1. 1.
    Corton MM (2009) Anatomy of pelvic floor dysfunction. Obstet Gynecol Clin North Am 36(3):401–419.  https://doi.org/10.1016/j.ogc.2009.09.002 CrossRefGoogle Scholar
  2. 2.
    Downing SJ, Sherwood OD (1986) The physiological role of relaxin in the pregnant rat. IV. The influence of relaxin on cervical collagen and glycosaminoglycans. Endocrinology 118(2):471–479. https://doi.org/10.1210/endo-118-2-471
  3. 3.
    Peschers UM, Schaer GN, DeLancey JO et al (1997) Levator ani muscle function before and after childbirth. Brit J Obstet Gynaec 104(9):1004–1008. https://doi.org/10.1111/j.1471-0528.1997.tb12057.x
  4. 4.
    Petros PEP, Ulmsten UI (1990) Pregnancy effects on the intravaginal sling operation. Acta Obstet Gynecol Scand 69(S153):77–78. https://doi.org/10.1111/j.1600-0412.1990.tb08038.x
  5. 5.
    Wall LL, Norton PA, DeLancey JOL (1993) Practical Urogynecology. Williams and WilkinsGoogle Scholar
  6. 6.
    Lin YH, Liu G, Li M et al (2010) Recovery of continence function following simulated birth trauma involves repair of muscle and nerves in the urethra in the female mouse. Eur Urol 57(3):506–512.  https://doi.org/10.1016/j.eururo.2009.03.020 CrossRefGoogle Scholar
  7. 7.
    Kane AR, Nager CW (2008) Midurethral sling for stress urinary incontinence. Clin Obstet and Gynecol 51(1):124–135.  https://doi.org/10.1097/GRF.0b013e318161e687 CrossRefGoogle Scholar
  8. 8.
    Barber MD, Maher C (2013) Epidemiology and outcome assessment of pelvic organ prolapse. Int Urogynecol J 24(11):1783–1790.  https://doi.org/10.1007/s00192-013-2169-9 CrossRefGoogle Scholar
  9. 9.
    Eliasson K, Larsson T, Mattsson E (2002) Prevalence of stress urinary incontinence in nulliparous elite trampolinists. Scand J Med Sci Sports 12(2):106–110. https://doi.org/10.1034/j.1600-0838.2002.120207.x
  10. 10.
    Da Roza T, Brandão S, Oliveira D et al (2015) Football practice and urinary incontinence: relation between morphology, function and biomechanics. J Biomech 48(9):1587–1592.  https://doi.org/10.1016/j.jbiomech.2015.03.013 CrossRefGoogle Scholar
  11. 11.
    Hill AV (1922) The maximum work and mechanical efficiency of human muscles, and their most economical speed. J Physiol 56(1–2):19–41. https://doi.org/10.1113/jphysiol.1922.sp001989
  12. 12.
    Humphrey JD, Yin FC (1987) On constitutive relations and finite deformations of passive cardiac tissue: I. A pseudostrain-energy function. J Biomech Eng 109(4):298–304. https://doi.org/10.1115/1.3138684
  13. 13.
    Martins JAC, Pires EB, Salvado R et al (1998) A numerical model of passive and active behavior of skeletal muscles. Comput Methods Appl Mech Eng 151(3–4):419–433. https://doi.org/10.1016/S0045-7825(97)00162-X
  14. 14.
    Zajac FE (1989) Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng 17(4):359–410Google Scholar
  15. 15.
    Yucesoy CA, Koopman BH, Huijing PA et al (2002) Three-dimensional finite element modeling of skeletal muscle using a two domain approach: linked fibre-matrix mesh model. J Biomech 35(9):1253–1262.  https://doi.org/10.1016/S0021-9290(02)00069-6 CrossRefGoogle Scholar
  16. 16.
    Blemker SS, Delp SL (2005) Three-dimensional representation of complex muscle architectures and geometries. Ann Biomed Eng 33(5):661–673. https://doi.org/10.1007/s10439-005-7385-0
  17. 17.
    McLean SG, Su A, van der Bogert AJ (2003) Development and validation of a 3-d model to predict knee joint loading during dynamic movement. J Biomech Eng 125(6):864–874. https://doi.org/10.1115/1.1634282
  18. 18.
    Böl M, Reese S (2007) A new approach for the simulation of skeletal muscles using the tool of statistical mechanics. Mat.-wiss. u. Werkstofftech. 38(12):955–964. https://doi.org/10.1002/mawe.200700225
  19. 19.
    Noakes KF, Pullan AJ, Bissett IP et al (2008) Subject specific finite elasticity simulations of the pelvic floor. J Biomech 41(14):3060–3065.  https://doi.org/10.1016/j.jbiomech.2008.06.037 CrossRefGoogle Scholar
  20. 20.
    Jing D, Ashton-Miller JA, DeLancey JOL (2012) A subject-specific anisotropic viscohyperelastic finite element model of female pelvic floor stress and strain during the second stage of labor. J Biomech 45(3):455–460.  https://doi.org/10.1016/j.jbiomech.2011.12.002 CrossRefGoogle Scholar
  21. 21.
    Havelková L et al (2016) The effects of fetal head trajectory on stress distribution in levator ani during vaginal delivery. In: Jorge RN et al (eds) BioMedWomen. CRC Press, Boca Raton, pp 189–192Google Scholar
  22. 22.
    Yan X, Kruger JA, Nielsen PM et al (2015) Effects of fetal head shape variation on the second stage of labour. J Biomech 48(9):1593–1599.  https://doi.org/10.1016/j.jbiomech.2015.02.062 CrossRefGoogle Scholar
  23. 23.
    Sora MC, Jilavu R, Matusz P (2012) Computer aided three-dimensional reconstruction and modeling of the pelvis, by using plastinated cross sections, as a powerful tool for morphological investigations. Surg Radiol Anat 34:731–736.  https://doi.org/10.1007/s00276-011-0862-2 CrossRefGoogle Scholar
  24. 24.
    Feil P, Sora MC (2014) A 3D reconstruction model of the female pelvic floor by using plastinated cross sections. Austin J Anat 1(5):1022Google Scholar
  25. 25.
    Bhattarai A, Frotscher R, Sora M-C, Staat M (2014) A 3D finite element model of the female pelvic floor for the reconstruction of the urinary incontinence. In: Oñate E, Oliver J, Huerta A (eds) Proceedings of WCCM XI–ECCM V–ECFD VI, Barcelona, Spain, 20–25 July 2014, pp 923–934. https://doi.org/10.21269/6507
  26. 26.
    Janda S, van der Helm F, de Blok SB (2003) Measuring morphological parameters of the pelvic floor for finite element modelling purposes. J Biomech 36(6):749–757. https://doi.org/10.1016/S0021-9290(03)00008-3
  27. 27.
    Pato MPM, Areias P (2010) Active and passive behaviors of soft tissues: pelvic floor muscles. Int J Numer Meth Biomed Eng 26(6):667–680.  https://doi.org/10.1002/cnm.1351
  28. 28.
    Pandy MG, Zajac FE, Sim E et al (1990) An optimal control model for maximum-height human jumping. J Biomech 23(12):1185–1198. https://doi.org/10.1016/0021-9290(90)90376-E

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Aroj Bhattarai
    • 1
  • Ralf Frotscher
    • 1
    • 2
  • Manfred Staat
    • 1
    Email author
  1. 1.Biomechanics Laboratory, Institute of BioengineeringFH Aachen University of Applied SciencesJülichGermany
  2. 2.TWT GmbH Science and InnovationStuttgartGermany

Personalised recommendations