Advertisement

From Dengue to Zika: Environmental and Structural Risk Factors for Child and Maternal Health in Costa Rica Among Indigenous and Nonindigenous Peoples

  • Gabriela Alvarado
  • Jorge Benavides-Rawson
Chapter
Part of the Global Maternal and Child Health book series (GMCH)

Abstract

In 2016, the Zika virus took the world by storm, as after much debate and controversy, it was recognized that the virus could cause microcephaly and other developmental problems in fetuses. While the center of this storm was Brazil, other countries in Latin America were also getting ready for the epidemic due to the widespread presence of the vector, the Aedes mosquito, on the continent. For the last two decades, Costa Rica has struggled with high rates of dengue, another virus from the same family as Zika and which also shares the same vector. For this reason, a Zika epidemic was considered imminent. Yet, even though there were cases of Zika in the Central American nation, an epidemic of the proportions seen in Brazil never happened. This chapter examines the elements that made possible for Costa Rica to have lower-than-expected rates of Zika infection. It also looks at the conditions in the Costa Rican health care system that would potentially minimize the long-term effects on maternal and child health of such an outbreak, especially within indigenous communities who are among the most vulnerable populations.

Keywords

Indigenous women Maternal health Zika virus Zika congenital syndrome Central America Dengue virus Costa Rica Viral infection Child health Microcephaly Pregnancy disorders Fetal malformation Mosquito Vertical transmission Aedes aegypti Ngöbe Disease ecology Mosquito-borne disease Arbovirus Kingdon’s Three Streams Model Epidemic Epidemiology 

References

  1. Alvarado, M. G., & Schwartz, D. A. (2016). Zika virus infection in pregnancy, microcephaly, and maternal and fetal health—What we think, what we know, and what we think we know. Archives of Pathology & Laboratory Medicine, 141(1), 26–23.  https://doi.org/10.5858/arpa.2016-0382-RA. Retrieved from http://www.archivesofpathology.org/doi/full/10.5858/arpa.2016-0429-ED CrossRefGoogle Scholar
  2. Alvarado, M. G., & Schwartz, D. A. (2017). Zika virus infection in pregnancy, microcephaly, and maternal and fetal health: What we think, what we know, and what we think we know. Archives of Pathology & Laboratory Medicine, 141(1), 26–32.CrossRefGoogle Scholar
  3. Area de Salud de Coto Brus. (2012). Sistematización de buenas prácticas: Desarrolladas para la promoción de estilos de vida saludables y la atención de la salud materno-infantil en la población indígena Ngöbe. Caja Costarricense del Seguro Social. Coto Brus.Google Scholar
  4. Bell, B. P., Boyle, C. A., & Petersen, L. R. (2016). Preventing Zika virus infections in pregnant women: An urgent public health priority. American Journal of Public Health, 106(4), 589–590.  https://doi.org/10.2105/AJPH.2016.303124 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Benavides Lara, A., María de la Paz Barboza Arguello, Hernandez de Mezerville, M., Gonzalez Elizondo, M., Prevencion y Control de Infecciones Hospital Nacional de Ninos. (2016). Protocolo de vigilancia de microcefalia en el marco de vigilancia del virus del Zika en Costa Rica. San Jose. Retrieved from https://www.ministeriodesalud.go.cr/index.php/vigilancia-de-la-salud/normas-protocolos-y-guias/2995-protocolo-de-vigilancia-microcefalia-en-rn-el-marco-de-la-vigilancia-del-virus-del-zika-en-costa-rica/file
  6. Buse, K., Mays, N., & Walt, G. (2012). Making health policy (understanding public health) (2nd ed.). London: Open University Press.Google Scholar
  7. Cairney, P., & Jones, M. D. (2016). Kingdon’s multiple streams approach: What is the empirical impact of this universal theory? Policy Studies Journal, 44(1), 37–58.  https://doi.org/10.1111/psj.12111 CrossRefGoogle Scholar
  8. Caminade, C., Turner, J., Metelmann, S., Hesson, J. C., Blagrove, M. S. C., Solomon, T., et al. (2016). Global risk model for vector-borne transmission of Zika virus reveals the role of El Niño 2015. Proceedings of the National Academy of Sciences, 114(1), 119–124.  https://doi.org/10.1073/pnas.1614303114 CrossRefGoogle Scholar
  9. Campo-Engelstein, L. & Meagher, K. (2011). Costa Rica’s ‘White legend’: how racial narratives undermine its health care system. Developing World Bioethics, 11(2), 99–107.CrossRefPubMedGoogle Scholar
  10. CDC (Centers for Disease Control and Prevention). (2016). CDC concludes Zika causes microcephaly and other birth defects. Retrieved April 19, 2017, from http://www.cdc.gov/media/releases/2016/s0413-zika-microcephaly.html.
  11. Chan, J. F. W., Choi, G. K. Y., Yip, C. C. Y., Cheng, V. C. C., & Yuen, K. Y. (2016). Zika fever and congenital Zika syndrome: An unexpected emerging arboviral disease. Journal of Infection, 72(5), 507–524.  https://doi.org/10.1016/j.jinf.2016.02.011 CrossRefPubMedGoogle Scholar
  12. Cofresi, I. M. (1994). Migration and health in Talamanca, Costa Rica: An applied medical anthropology approach. Georgia State University.Google Scholar
  13. Comision Economica para America Latina y el Caribe, Organizacion Panamericana de la Salud, UNFPA, & Naciones Unidas. (2010). Salud materno infantil de pueblos indigenas y afrodescendientes de America Latina: una relectura desde el enfoque de derechos. Santiago. Retrieved March 17, 2017, from http://www.cepal.org/publicaciones/xml/8/41668/lcw346.pdf.
  14. Costa, F., Sarno, M., Khouri, R., de Paula Freitas, B., Siqueira, I., Ribeiro, G. S., et al. (2016). Emergence of congenital Zika syndrome : Viewpoint from the front lines. Annals of Internal Medicine, 164(10), 689–691.  https://doi.org/10.7326/M16-0332 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Costello, A., Dua, T., Duran, P., Gülmezoglu, M., Oladapo, O. T., Perea, W., et al. (2016). Editorial: Defining the syndrome associated with congenital Zika virus infection. Bulletin of the World Health Organization, 94(6), 406–406A.  https://doi.org/10.2471/BLT.16.176990 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Culjat, M., Darling, S. E., Nerurkar, V. R., Ching, N., Kumar, M., Min, S. K., et al. (2016). Clinical and imaging findings in an infant with Zika embryopathy. Clinical Infectious Diseases, 63(6), 805–811.  https://doi.org/10.1093/cid/ciw324 CrossRefPubMedPubMedCentralGoogle Scholar
  17. da Cruz Ferreira, D. A., Degener, C. M., de Almeida Marques-Toledo, C., Bendati, M. M., Fetzer, L. O., Teixeira, C., et al. (2017). Meteorological variables and mosquito monitoring are good predictors for infestation trends of Aedes aegypti, the vector of dengue, chikungunya and Zika. Parasites & Vectors, 10(1), 78.  https://doi.org/10.1186/s13071-017-2025-8. Retrieved from http://parasitesandvectors.biomedcentral.com/articles/10.1186/s13071-017-2025-8 CrossRefGoogle Scholar
  18. de Fatima Vasco Aragao, M., van der Linden, V., Brainer-Lima, A. M., Coeli, R. R., Rocha, M. A., Sobral da Silva, P., et al. (2016). Clinical features and neuroimaging (CT and MRI) findings in presumed Zika virus related congenital infection and microcephaly: retrospective case series study. British Medical Journal, 353.  https://doi.org/10.1136/bmj.i1901
  19. de Oliveira, W. K., Cortez-Escalante, J., Gonçalves Holanda De Oliveira, W. T., Ikeda do Carmo, G. M., Pessanha Henriques, C. M., Coelho, G. E., et al. (2016). Increase in Reported prevalence of microcephaly in infants born to women living in areas with confirmed Zika virus transmission during the first trimester of pregnancy—Brazil, 2015. MMWR: Morbidity & Mortality Weekly Report, 65(9), 242–247.  https://doi.org/10.15585/mmwr.mm6509e2 CrossRefGoogle Scholar
  20. de Paula Freitas, B., de Oliveira Dias, J. R., Prazeres, J., Almeida Sacramento, G., Icksang Ko, A., Maia, M., et al. (2016). Ocular findings in infants with microcephaly associated with presumed Zika virus congenital infection in Salvador, Brazil. Journal of the American Medical Association Ophthalmology, 134(5), 529–535.Google Scholar
  21. Escobar, L. E., Romero-Alvarez, D., Leon, R., Lepe-Lopez, M. A., Craft, M. E., Borbor-Cordova, M. J., et al. (2016). Declining prevalence of disease vectors under climate change. Scientific Reports, 6, 39150. doi: https://doi.org/10.1038/srep39150. . Retrieved from https://www.nature.com/articles/srep39150
  22. Fallas Hidalgo, G., Quiros Valverde, M., Gamboa Quesada, M., Viales Araya, E. (2006). Diagnostico Socioeconomico region Brunca. San Jose. Retrieved from http://www.infoagro.go.cr/Inforegiones/RegionBrunca/Documents/Planes, Proyectos, Programas/DIAGNÓSTICO REGION BRUNCA 2006 VERSION FINAL.pdf.
  23. Fuller, D. O., Troyo, A., & Beier, J. C. (2009). El Niño Southern Oscillation and vegetation dynamics as predictors of dengue fever cases in Costa Rica. Environmental Research Letters, 4(1), 14011.  https://doi.org/10.1088/1748-9326/4/1/014011 CrossRefGoogle Scholar
  24. Hernandez Chaves, O. N., César Gamboa, P., Daniel Salas, P., Rafael Salazar, P., Porras, H., & Griselda Ugalde, U. (2016). Lineamientos nacionales para el abordaje integral de la mujer embarazada y el recién nacido, relacionado con la infección Zika. San Jose. Retrieved from https://www.ministeriodesalud.go.cr/index.php/biblioteca-de-archivos/3054-lineamientos-nacionales-para-el-abordaje-integral-de-la-mujer-embarazada-y-el-recien-nacido-relacionado-con-la-infeccion-del-zika/file
  25. Hodgson, D. L. (2011). Being Maasai, becoming indigenous. Postcolonial politics in a neoliberal world. Bloomington, IN: Indiana University Press.Google Scholar
  26. INEC. (2013). Territorios indígenas principales indicadores demográficos y socioeconómicos 2011. San Jose. Retrieved from http://www.inec.go.cr/sites/default/files/documentos/inec_institucional/estadisticas/resultados/repoblaccenso2011-02.pdf.pdf
  27. INEC. (2015). Mortalidad materna y su evolucion reciente. San Jose. Retrieved from http://www.inec.go.cr/sites/default/files/documentos/poblacion/mortalidad/publicaciones/mmerd14.pdf
  28. INEC. (2016). Mortalidad infantil y su evolucion reciente. San Jose. Retrieved from http://www.inec.go.cr/sites/default/files/documetos-biblioteca-virtual/repoblaciodef-is2016.pdf
  29. International Labour Organization. (n.d.). C169—Indigenous and tribal peoples convention, 1989 (No. 169). Retrieved from http://www.ilo.org/dyn/normlex/en/f?p=NORMLEXPUB:12100:0::NO::P12100_ILO_CODE:C169
  30. IWGIA (International Work Group for Indigenous Affairs. (2016). Indigenous peoples in Costa Rica. Retrieved from http://www.iwgia.org/regions/latin-america/costa-rica
  31. Ladhani, S. N., O’Connor, C., Kirkbride, H., Brooks, T., & Morgan, D. (2016). Outbreak of Zika virus disease in the Americas and the association with microcephaly, congenital malformations and Guillain–Barré syndrome. Archives of Disease in Childhood, 101(7), 600–602.  https://doi.org/10.1136/archdischild-2016-310590 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Low, S. (1985). Culture, politics and medicine in Costa Rica. An anthropological study of medical change. Bedford Hills, NY: Redgrave.Google Scholar
  33. Martinez, M. E., Cortez-Escalante, J., Tenório, W., Holanda, G., Madeleine, G., & Eyrolle-Guignot, D. (2016). Preventing Zika virus infection during pregnancy using a seasonal window of opportunity for conception. PLoS Biology, 14(7), e1002520.  https://doi.org/10.1371/journal.pbio.1002520 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Mena, N., Troyo, A., Bonilla-Carrión, R., & Calderón-Arguedas, O. (2011). Factors associated with incidence of dengue in Costa Rica. Revista Panamericana de Salud Publica, 29(4), 234–242. Retrieved March 17, 2017, from http://www.ncbi.nlm.nih.gov/pubmed/21603768.CrossRefPubMedGoogle Scholar
  35. Ministerio de Salud de Costa Rica. (2014a). Aproximación a la condición de salud los pueblos indígenas de Costa Rica. San Jose. Retrieved March 17, 2017, from https://www.ministeriodesalud.go.cr/ops/documentos/docEpidemiologi del Pueblos Indigenas de Costa Rica.pdf.
  36. Ministerio de Salud de Costa Rica. (2014b). Analisis de situacion de salud Costa Rica. San Jose. Retrieved from https://www.ministeriodesalud.go.cr/index.php/vigilancia-de-la-salud/analisis-de-situacion-de-salud/2618-analisis-de-situacion-de-salud-en-costa-rica/file
  37. Ministerio de Salud de Costa Rica. (2016). Boletín epidemiológico No 1—2016 Zika, Chikungunya y Dengue. San Jose. Retrieved from https://www.ministeriodesalud.go.cr/index.php/vigilancia-de-la-salud/analisis-de-situacion-de-salud/2861-chikungunya-2016/file
  38. Ministerio de Salud de Costa Rica. (2017). Resumen 2016 de la situacion Zika, Chikunguya y Dengue. San Jose. Retrieved from https://www.ministeriodesalud.go.cr/index.php/biblioteca-de-archivos/3189-resumen-de-la-situacion-en-america-del-zika-chikungunya-y-dengue-para-el-ano-2016/file
  39. de Miranda, H. A., Costa, M. C., Frazão, M. A. M., Simão, N., Franchischini, S., & Moshfeghi, D. M. (2016). Expanded spectrum of congenital ocular findings in microcephaly with presumed Zika infection. Ophthalmology, 123(8), 1788–1794.  https://doi.org/10.1016/j.ophtha.2016.05.001 CrossRefPubMedGoogle Scholar
  40. Morgan, L. M. (1993). Community participation in health. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  41. National Institutes of Health. (2017, March 31). Phase 2 Zika vaccine trial begins in U.S., Central and South America. Retrieved from https://www.nih.gov/news-events/news-releases/phase-2-zika-vaccine-trial-begins-us-central-south-america
  42. Nunes, M. L., Carlini, C. R., Marinowic, D., Neto, F. K., Fiori, H. H., Scotta, M. C., et al. (2016). Microcephaly and Zika virus: A clinical and epidemiological analysis of the current outbreak in Brazil. Jornal de Pediatria, 92(3), 230–240.  https://doi.org/10.1016/j.jped.2016.02.009 CrossRefPubMedGoogle Scholar
  43. Ortiz, P., Fernandez, W., & Tropper, E. (2009). Proyecto Dotacion De Infraestructura Nueva Para Un Ebais: “Construcción De Un Ebais Modelo En El Territorio La Casona Coto Brus. Coto Brus.Google Scholar
  44. Panchaud, A., Stojanov, M., Ammerdorffer, A., & Vouga, M. (2016). Emerging role of Zika virus in adverse fetal and neonatal outcomes. Clinical Microbiological Reviews, 29(3), 659–694.  https://doi.org/10.1128/CMR.00014-16.Address CrossRefGoogle Scholar
  45. Paul, L. M., Carlin, E. R., Jenkins, M. M., Tan, A. L., Barcellona, C. M., Nicholson, C. O., et al. (2016). Dengue virus antibodies enhance Zika virus infection. Clinical & Translational Immunology, 5(12), e117.  https://doi.org/10.1038/cti.2016.72 CrossRefGoogle Scholar
  46. Perez, H. (1997). Estimates of the indigenous population of Central America (16th to 20th Centuries). In A. R. Pebley & L. Rosero-Bixby (Eds.), Demographic diversity and change in the Central American isthmus (pp. 95–115). Santa Monica: RAND.Google Scholar
  47. Perez, S., Tato, R., Cabrera, J. J., Lopez, A., Robles, O., Paz, E., et al. (2016, March). Confirmed case of Zika virus congenital infection, Spain. Euro Surveillance, 21(24).  https://doi.org/10.2807/1560-7917.ES.2016.21.24.30261
  48. Petersen, L. R., Jamieson, D. J., Powers, A. M., & Honein, M. A. (2016). Zika virus. New England Journal of Medicine, 374(16), 1552–1563.  https://doi.org/10.1056/NEJMra1602113 CrossRefPubMedGoogle Scholar
  49. Rey, J. R., & Lounibos, P. (2015). Ecología de Aedes aegypti y Aedes albopictus en América y transmisión enfermedades. Biomédica, 35, 177–185.CrossRefPubMedGoogle Scholar
  50. Santos, J., & Meneses, B. M. (2017). An integrated approach for the assessment of the Aedes aegypti and Aedes albopictus global spatial distribution, and determination of the zones susceptible to the development of Zika virus. Acta Tropica, 168, 80–90.  https://doi.org/10.1016/j.actatropica.2017.01.015 CrossRefPubMedGoogle Scholar
  51. Schliemann, C. (2012). La autonomía de los pueblos indígenas de Costa Rica una contrastación del estándar internacional con la legislación nacional y su implementación. Revista Latinoamericana de Derechos Humanos, 23(1), 145–185.Google Scholar
  52. Schwartz, D.A. (2017a, March 20). What do we know about Zika virus in indigenous populations? Interview by Sarah Anwar, Washington, DC. Contagion Live. Retrieved from http://www.contagionlive.com/videos/what-do-we-know-about-zika-virus-in-indigenous-populations
  53. Schwartz, D. A. (2017b). The origin and emergence of Zika virus, the newest TORCH infection—What’s old is new again. Archives of Pathology & Laboratory Medicine, 141(1), 18–25. Retrieved from http://www.archivesofpathology.org/doi/full/10.5858/arpa.2016-0429-ED CrossRefGoogle Scholar
  54. Schwartz, D. A. (2017c). Autopsy and postmortem studies are concordant: Pathology of Zika virus infection in neonates and stillborn fetuses with microcephaly following transplacental transmission. Archives of Pathology & Laboratory Medicine, 141(1), 68–72. Retrieved from http://www.archivesofpathology.org/doi/full/10.5858/arpa.2016-0343-OA CrossRefGoogle Scholar
  55. Simmons, C. P., Farrar, J. J., van Vinh Chau, N., & Wills, B. (2012). Dengue. New England Journal of Medicine, 366(15), 1423–1432.  https://doi.org/10.1056/NEJMra1110265 CrossRefPubMedGoogle Scholar
  56. Steele, R. W. (2016). Zika Virus: An explosive pandemic and a new TORCH agent. Clinical Pediatrics, 55(8), 698–700.CrossRefPubMedGoogle Scholar
  57. Swanstrom, J. A., Plante, J. A., Plante, K. S., Young, E. F., McGowan, E., Gallichotte, E. N., et al. (2016). Dengue virus envelope dimer epitope monoclonal antibodies isolated from dengue patients are protective against Zika virus. mBio, 7(4), e01123-16.  https://doi.org/10.1128/mBio.01123-16 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Tilak, R., Ray, S., Tilak, V. W., & Mukherji, S. (2016). Dengue, chikungunya … and the missing entity – Zika fever: A new emerging threat. Medical Journal Armed Forces India, 72(2), 1–7.  https://doi.org/10.1016/j.mjafi.2016.02.017 CrossRefGoogle Scholar
  59. Torjesen, I. (2016). Zika virus outbreaks prompt warnings to pregnant women. British Medical Journal, 352, i500.  https://doi.org/10.1136/bmj.i500 CrossRefPubMedGoogle Scholar
  60. Troyo, A., Calderón-Arguedas, O., Fuller, D. O., Solano, M. E., Avendaño, A., Arheart, K. L., et al. (2008). Seasonal profiles of Aedes aegypti (Diptera: Culicidae) larval habitats in an urban area of Costa Rica with a history of mosquito control. Journal Of Vector Ecology: Journal Of The Society For Vector Ecology, 33(1), 76–88. Retrieved from http://ezproxy.gsu.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=mnh&AN=18697310&site=eds-live CrossRefGoogle Scholar
  61. Troyo, A., Fuller, D. O., Calderón-Arguedas, O., Solano, M. E., & Beier, J. C. (2009). Urban structure and dengue incidence in Puntarenas, Costa Rica. Singapore Journal of Tropical Geography, 30(2), 265–282.  https://doi.org/10.1111/j.1467-9493.2009.00367.x CrossRefPubMedPubMedCentralGoogle Scholar
  62. Unger, J., De Paepe, P., Buitron, R. & Soors, W. (2008). Costa Rica: achievements of a heterodox health policy. American Journal of Public Health, 98(4), 636–643.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Vargas Gonzalez, W. (2006). Atencion primaria de salud en accion. San Jose: EDNASSS.Google Scholar
  64. Wen, J., Tang, W. W., Sheets, N., Ellison, J., Sette, A., Kim, K., & Shresta, S. (2017). Identification of Zika virus epitopes reveals immunodominant and protective roles for dengue virus cross-reactive CD8+ T cells. Nature Microbiology, 2, 17036.  https://doi.org/10.1038/nmicrobiol.2017.36 CrossRefPubMedPubMedCentralGoogle Scholar
  65. World Bank. (2016). Maternal mortlaity ratio. Retrieved from http://data.worldbank.org/indicator/SH.STA.MMRT
  66. World Health Organization. (2017). World Health Organization. Costa Rica. Retrieved from January 1, 2017, http://www.who.int/countries/cri/en/

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of AnthropologyGeorgia State UniversityAtlantaUSA
  2. 2.Department of AnthropologyThe George Washington UniversityWashington, DCUSA

Personalised recommendations