Priority Systems with Orientation. Analytical and Numerical Results

  • Gheorghe MishkoyEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10684)


A class of priority queueing systems with non-zero switchover times is considered. Some performance characteristics such as distributions of busy periods, conditions of stationarity, traffic coefficients, distribution of queue length, probabilities of the system’s state, etc. are presented. Numerical algorithms for their modelling are developed.


Priority queueing systems Semi-Markov orientation Busy period Traffic coefficient Numerical algorithm 


  1. 1.
    Alfa, A.S.: Queueing Theory for Telecommunication. Springer, Heidelberg (2010). CrossRefGoogle Scholar
  2. 2.
    Wuyi, Y., Yutake, T., Takagi, H.: Advances in Queueing Theory and Network. Springer, Heidelberg (2009). Google Scholar
  3. 3.
    Vishnevsky, V.V.: Theoretical Bases of Design of the Communication Network. Tehnosphera, Moscow (2003)Google Scholar
  4. 4.
    Vishnevsky, V.V., Semenova, O.V.: Polling Systems: Theory and Applications for Broadband Wireless Networks. Academic Publishing, London (2012)Google Scholar
  5. 5.
    Mishkoy, Gh.K.: Generalized Priority Systems. Academy of Sciences of Moldova, Chisinau (2009). (in Russian)Google Scholar
  6. 6.
    Mishkoy, G., Mitev, L.: Performance characteristics for DD priority discipline with Semi-Markov switching. In: Vishnevsky, V., Kozyrev, D., Larionov, A. (eds.) DCCN 2013. CCIS, vol. 279, pp. 204–218. Springer, Cham (2014). CrossRefGoogle Scholar
  7. 7.
    Gnedenko, et al.: Priority Queueing Systems. Moscow State University (1973). (in Russian)Google Scholar
  8. 8.
    Kendall, D.G.: Some problems in the theory of queues. J. R. Stat. Soc. Ser. B 13(2), 151–185 (1951)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Takacs, L.: Introduction to the Theory of Queues. Oxford University Press, New York (1962)zbMATHGoogle Scholar
  10. 10.
    Danielyan, E.A.: Priority Problems for Queueing Systems with One Server. Moscow State University (1971). (in Russian)Google Scholar
  11. 11.
    Pollaczek, F.: Theorie analytique des problems stochastiques relatifs a un groupe de lignes telephoniques avec dispositive d’attente. Memorial de Sciences Mathematiques. Paris (1961)Google Scholar
  12. 12.
    Khintchin, A.Ya.: Papers on Mathematical Queueing Theory. Fizmatgiz, Moscow (1963). (in Russian)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Mathematics and Computer ScienceAcademy of Sciences of MoldovaChisinauRepublic of Moldova
  2. 2.Department of Mathematics and StatisticsFree International University of MoldovaChisinauRepublic of Moldova

Personalised recommendations