Advertisement

Pathophysiology of Wrist and Hand Injuries in Tennis Players: Tendons, Ligaments and TFCC Lesions

  • Andrea De Vita
  • R. A. Purnachandra Tejaswi
  • Paolo Scarso
Chapter

Abstract

The final, crucial link in the kinetic chain between the body and racket is the wrist and hand, a complex structure that executes several roles essential to the production of all tennis strokes. There is no question that modern tennis players themselves in their striving through trial and error for more power, more control and more variety in stroke production are the primary factors in determining changes to stroke mechanics. Within this scenario, the wrist plays an important role in achieving the best strokes. General theory provides a basis upon which modifications can be made; an understanding of individual stroke mechanics leads to improved performance [1]. An increase in the incidence of wrist problems among tennis players in the last 20 years can be attributed to changes in equipment, grip, velocity and performance. Musculoskeletal injuries related to tennis may be tied to either a single event in which a macrotrauma is responsible for acute injury or to chronic overuse [2].

References

  1. 1.
    Elliott B. Biomechanics and tennis. Br J Sports Med. 2006;40:392–6.CrossRefGoogle Scholar
  2. 2.
    Tagliafico A, Ameri P, Michaud J, Derchi LE, Sormani MP, Martinoli C. Wrist injuries in nonprofessional tennis players: relationships with different grips. Am J Sports Med. 2009;37(4):760–7.CrossRefGoogle Scholar
  3. 3.
    Pluim BM, Staal JB, Windler GE, et al. Tennis injuries: occurrence, aetiology, and prevention. Br J Sports Med. 2006;40(5):415–23.CrossRefGoogle Scholar
  4. 4.
    Kibler WB, Safran MR. Tennis injuries. Med Sport Sci. 2005;48:120–37.CrossRefGoogle Scholar
  5. 5.
    Loosli AR, Leslie M. Stress fractures of the distal radius. Am J Sports Med. 1991;19(5):523–4.CrossRefGoogle Scholar
  6. 6.
    Rettig AC. Stress fracture of the ulna in an adolescent tournament tennis player. Am J Sports Med. 1983;11(2):103–6.CrossRefGoogle Scholar
  7. 7.
    Kibler B. Kinetic Chain contributions to elbow function and dysfunction in sports. Clin Sports Med. 2004;23:545–52.CrossRefGoogle Scholar
  8. 8.
    Walshe A, Wison G, Ettema G. Stretch-shorten cycle compared with isometric preload: contributions to enhanced muscular performance. J Appl Physiol. 1998;89:97–106.CrossRefGoogle Scholar
  9. 9.
    Reid M, Elliott B. The one- and two-handed backhands in tennis. Sports Biomech. 2002;1:47–68.CrossRefGoogle Scholar
  10. 10.
    Miller S. Modern tennis rackets, balls, and surfaces. Br J Sports Med. 2006;40:401–5.  https://doi.org/10.1136/bjsm.2005.023283.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Stuelcken M, Mellifont D, Gorman A, Sayers M. Wrist injuries in tennis players: a narrative review. Sports Med. 2016;47(5):857.CrossRefGoogle Scholar
  12. 12.
    Lynall RC, Kerr ZY, Djoko A, et al. Epidemiology of national collegiate athletic association men’s and women’s tennis injuries, 2009/2010–2014/2015. Br J Sports Med. 2016;50(19):1211–6.CrossRefGoogle Scholar
  13. 13.
    Hutchinson MR, Laprade RF, Burnett QM, et al. Injury surveillance at the usta boys’ tennis championships: a 6-yr study. Med Sci Sports Exerc. 1995;27(6):826–31.CrossRefGoogle Scholar
  14. 14.
    Reece LA, Fricker PA, Maguire KF. Injuries to elite young tennis players at the Australian Institute of Sport. Aust J Sci Med Sport. 1986;18:11.Google Scholar
  15. 15.
    Sell K, Hainline B, Yorio M, et al. Injury trend analysis from the us open tennis championships between 1994 and 2009. Br J Sports Med. 2014;48(7):546–51.CrossRefGoogle Scholar
  16. 16.
    Bahamonde R, Knudson D. Kinematics analysis of the open and square stance in tennis forehand. J Sci Med Sport. 2003;6(1):88–101.CrossRefGoogle Scholar
  17. 17.
    Elliott B, Marsh T. A biomechanical comparison of the top-spin and back-spin forehand approach shots in tennis. J Sports Sci. 1989;7:215–27.CrossRefGoogle Scholar
  18. 18.
    Montalvan B, Parier J, Brasseur JL, Le Viet D, Drape JL. Extensor carpi ulnaris injuries in tennis players: a study of 28 cases. J Sports Med. 2006;40:424–9.  https://doi.org/10.1136/bjsm.2005.0232759.CrossRefGoogle Scholar
  19. 19.
    Spinner M, Kaplan EB. Extensor carpi ulnaris. Its relationship to the stability of the distal radio-ulnar joint. Clin Orthop Relat Res. 1970;68:124–9.CrossRefGoogle Scholar
  20. 20.
    Rayan GM. Recurrent dislocation of the extensor carpi ulnaris in athletes. Am J Sports Med. 1983;11:183–4.CrossRefGoogle Scholar
  21. 21.
    Vulpius J. Habitual dislocation of the extensor carpi ulnaris tendon. Acta Orthop Scand. 1964;34:105–8.CrossRefGoogle Scholar
  22. 22.
    Inoue G, Tamura Y. Recurrent dislocation of the extensor carpi ulnaris tendon. Br J Sports Med. 1998;32:172–4.CrossRefGoogle Scholar
  23. 23.
    Allende C, Le Viet D. Extensor carpi problems at the wrist: classification, surgical treatment and results. J Hand Surg Br. 2005;30:265–72.CrossRefGoogle Scholar
  24. 24.
    Palmer AK, Shaken JR, Werner FW, et al. The extensor retinaculum of the wrist; an anatomical and biomechanical study. J Hand Surg Br. 1985;10:11–6.CrossRefGoogle Scholar
  25. 25.
    Solomon L. Tenovaginitis of the extensor carpi ulnaris. South Afr Med J. 1964;38:42–4.Google Scholar
  26. 26.
    Angerman P. Post traumatic partial rupture of the extensor carpi ulnaris tendon. Scand J Hand Surg. 1993;27:321–2.Google Scholar
  27. 27.
    Blazar PE, Chan PS, Kneeland JB, Leatherwood D, Bozentka DJ, Kowalchick R. The effect of observer experience on magnetic resonance imaging interpretation and localization of triangular fibrocartilage complex lesions. J Hand Surg Am. 2001;26:742–8.CrossRefGoogle Scholar
  28. 28.
    Iordache SD, Rowan R, Garvin GJ, Osman S, Grewal R, Faber KJ. Prevalence of triangular fibrocartilage complex abnormalities on MRI scans of asymptomatic wrists. J Hand Surg Am. 2012;37:98–103.CrossRefGoogle Scholar
  29. 29.
    Oneson SR, Timins ME, Scales LM, Erickson SJ, Chamoy L. MR imaging diagnosis of triangular fibrocartilage pathology with arthroscopic correlation. AJR Am J Roentgenol. 1997;168:1513–8.CrossRefGoogle Scholar
  30. 30.
    Rosner JL, Zlatkin MB, Clifford P, Ouellette EA, Awh MH. Imaging of athletic wrist and hand injuries. Semin Musculoskelet Radiol. 2004;8:57–79.CrossRefGoogle Scholar
  31. 31.
    Palmer AK. Triangular fibrocartilage complex lesions: a classification. J Hand Surg Am. 1989;14:594–606.CrossRefGoogle Scholar
  32. 32.
    Nagle DJ. Triangular fibrocartilage complex tears in the athlete. Clin Sports Med. 2001;20:155–66.CrossRefGoogle Scholar
  33. 33.
    McAdams TR, Swan J, Yao J. Arthroscopic treatment of triangular fibrocartilage wrist injuries in the athlete. Am J Sports Med. 2009;37(2):291–7.  https://doi.org/10.1177/0363546508325921.CrossRefPubMedGoogle Scholar
  34. 34.
    Bednar JM, Osterman AL. The role of arthroscopy in the treatment of traumatic triangular fibrocartilage injuries. Hand Clin. 1994;10:605–14.PubMedGoogle Scholar
  35. 35.
    Rettig AC. Athletic injuries of the wrist and hand. Part I: traumatic injuries of the wrist. Am J Sports Med. 2003;31:1038–48.CrossRefGoogle Scholar
  36. 36.
    Feldon P, Terrono AL, Belsky MR. Wafer distal ulna resection for triangular fibrocartilage tears and/or ulna impaction syndrome. J Hand Surg. 1992;17A:731–7.CrossRefGoogle Scholar
  37. 37.
    Bishop AT, Beckenbaugh RD. Fracture of the hamate hook. J Hand Surg. 1988;13A:135–9.CrossRefGoogle Scholar
  38. 38.
    Bowen TL. Injuries of the hamate bone. Hand. 1973;5:235–8.CrossRefGoogle Scholar
  39. 39.
    Bryan RS, Dobyns JH. Fractures of the carpal bones other than lunate and navicular. Clin Orthop. 1980;(149):107–11.Google Scholar
  40. 40.
    Murray PM, Cooney WP. Golf-induced injuries of the wrist. Clin Sports Med. 1996;15:85–109.PubMedGoogle Scholar
  41. 41.
    Weber ER, Chao EY. An experimental approach to the mechanism of scaphoid waist fractures. J Hand Surg. 1978;3A:142–8.CrossRefGoogle Scholar
  42. 42.
    Stark HH, Jobe FW, Boyes JH, et al. Fracture of the hook of the hamate in athletes. J Bone Joint Surg. 1977;59A:575–82.CrossRefGoogle Scholar
  43. 43.
    Failla JM. Hook of hamate vascularity: vulnerability to osteonecrosis and nonunion. J Hand Surg. 1993;18A:1075–9.CrossRefGoogle Scholar
  44. 44.
    Panagis JS, Gelberman RH, Taleisnik J, et al. The arterial anatomy of the human carpus. Part II: The intraosseous vascularity. J Hand Surg. 1983;8A:375–82.CrossRefGoogle Scholar
  45. 45.
    Egawa M, Asai T. Fractures of the hook of the hamate: report of six cases and the suitability of computerised tomography. J Hand Surg. 1983;8:393.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Andrea De Vita
    • 1
  • R. A. Purnachandra Tejaswi
    • 2
  • Paolo Scarso
    • 3
  1. 1.Concordia Hospital for Special SurgeryRomaItaly
  2. 2.Kasturba Medical CollegeManipal UniversityManipalIndia
  3. 3.Concordia Hospital for Special SurgeryRomeItaly

Personalised recommendations