Complexity and Stability of Adaptive Ecological Networks: A Survey of the Theory in Community Ecology
Abstract
Background and Significance of the topic: The planet is changing at paces never observed before. Species extinction is happening at faster rates than ever, greatly exceeding the five mass extinctions in the fossil record. Nevertheless, human life is strongly based on services provided by ecosystems, thus the responses to global change of the planet’s natural heritage are of immediate concern. Understanding the relationship between complexity and stability of ecosystems is of key importance for the maintenance of the balance of human growth and the conservation of all the natural services that ecosystems provide. Methodology: The concept of ecological networks and their characteristics are first introduced, followed by central and occasionally contrasting definitions of complexity and stability. The literature on the relationship between complexity and stability in different types of models and few real ecosystems is then reviewed, highlighting the theoretical debate and the lack of consensual agreement. Application/Relevance to systems analysis: This chapter uses ecological-network models to study the relationship between complexity and stability of natural ecosystems. Policy and/or practice implications: Mathematical network models can be used to simplify the vast complexity of the real world, to formally describe and investigate ecological phenomena, and to understand ecosystems propensity of returning to its functioning regime after a stress or a perturbation. Discussion and conclusion: The chapter concludes by summarising the importance of this line of research for the successful management and conservation of biodiversity and ecosystem services.
Keywords
Ecosystem services Community ecology Network complexity Food webs ConnectanceNotes
Acknowledgements
The authors are grateful to the National Research Foundation (NRF) of South Africa and the International Institute for Applied Systems Analysis (IIASA) for organizing the Southern African Young Scientist Summer Program (SA-YSSP). The contribution of two anonymous reviewers is acknowledged. This chapter is based on a review paper by the same authors submitted to Population Ecology.
References
- Allesina, S., & Pascual, M. (2008). Network structure, predator-prey modules, and stability in large food webs. Theoretical Ecology, 1, 55–64.CrossRefGoogle Scholar
- Allesina, S., & Tang, S. (2012). Stability criteria for complex ecosystems. Nature, 483, 205–208.CrossRefGoogle Scholar
- Almeida-Neto, M., Guimarães, P., Guimarães Jr., P. R., et al. (2008). A consistent metric for nestedness analysis in ecological systems: Reconciling concept and measurement. Oikos, 117, 1227–1239.CrossRefGoogle Scholar
- Atmar, W., & Patterson, B. D. (1993). The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia, 96, 373–382.CrossRefGoogle Scholar
- Bascompte, J., Jordano, P., Melián, C. J., et al. (2003). The nested assembly of plant-animal mutualistic networks. Proceedings of the National Academy of Sciences of the United States of America, 100, 9383–9387.CrossRefGoogle Scholar
- Bascompte, J., Jordano, P., & Olesen, J. M. (2006). Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science, 312, 431–433.CrossRefGoogle Scholar
- Bastolla, U., Fortuna, M. A., Pascual-Garcia, A., et al. (2009). The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature, 458, 1018–1021.CrossRefGoogle Scholar
- Baird, D., Luczkovich, J. J., & Christian, R. R. (1998). Assessment of spatial and temporal variability in ecosystem attributes of the St. Marks National Wildlife Refuge, Apalachee Bay, Florida. Estuarine Coastal Shelf Science, 47, 329–349.CrossRefGoogle Scholar
- Baird, D., & Mehta, A. (Eds.). (2011). Estuarine and coastal ecosystem modeling, Volume 9 in Treatise on estuarine and coastal science. Amsterdam: Elsevier.Google Scholar
- Banašek-Richter, C., Bersier, L. F., Cattin, M. F., et al. (2009). Complexity in quantitative food webs. Ecology, 90, 1470–1477.CrossRefGoogle Scholar
- Beckerman, A., Petchey, O. L., & Morin, P. J. (2010). Adaptive foragers and community ecology: Linking individuals to communities and ecosystems. Functional Ecology, 24, 1–6.CrossRefGoogle Scholar
- Berlow, E. L. (1999). Strong effects of weak interactions in ecological communities. Nature, 398, 330–334.CrossRefGoogle Scholar
- Berlow, E. L., Neutel, A. M., Cohen, J. E., et al. (2004). Interaction strengths in food webs: Issues and opportunities. Journal of Animal Ecology, 73, 585–598.CrossRefGoogle Scholar
- Bersier, L. F., Banašek-Richter, C., & Cattin, M. F. (2002). Quantitative descriptors of food-web matrices. Ecology, 83, 2394–2407.CrossRefGoogle Scholar
- Bonchev, D., & Buck, G. A. (2007). Quantitative measures of network complexity. In Complexity in chemistry, biology, and ecology. Berlin: Springer.Google Scholar
- Borrelli, J. J., Allesina, S., Amarasekare, P., et al. (2015). Selection on stability across ecological scales. Trends in Ecology & Evolution, 30, 417–425.CrossRefGoogle Scholar
- Borrvall, C., Ebenman, B., & Jonsson, T. (2000). Biodiversity lessens the risk of cascading extinction in model food webs. Ecology Letters, 3, 131–136.CrossRefGoogle Scholar
- Brännström, Å., Loeuille, N., Loreau, M., et al. (2011). Emergence and maintenance of biodiversity in an evolutionary food-web model. Theoretical Ecology, 4, 467–478. CrossRefGoogle Scholar
- Brännström, Å., Johansson, J., Loeuille, N., et al. (2012). Modelling the ecology and evolution of communities: A review of past achievements, current efforts, and future promises. Evolutionary Ecology Research, 14, 601–625.Google Scholar
- Brown, J. H., Calder III, W. A., & Kodric-Brown, A. (1978). Correlates and consequences of body size in nectar-feeding birds. American Zoologist, 68, 687–700.CrossRefGoogle Scholar
- Campbell, C., Yang, S., Shea, K., et al. (2012). Topology of plant-pollinator networks that are vulnerable to collapse from species extinction. Physical Review E, 86, 02192.CrossRefGoogle Scholar
- Camacho, J., Guimerà, R., & Amaral, L. A. N. (2002). Robust patterns in food web structure. Physical Review Letters, 88, 228102.CrossRefGoogle Scholar
- Cattin, M. F., Bersier, L. F., Banašek-Richter, C., et al. (2004). Phylogenetic constraints and adaptation explain food-web structure. Nature, 427, 835–839.CrossRefGoogle Scholar
- Chen, X., & Cohen, J. E. (2001). Global stability, local stability and permanence in model food webs. Journal of Theoretical Biology, 212, 223–235.CrossRefGoogle Scholar
- Christianou, M., & Kokkoris, G. D. (2008). Complexity does not affect stability in feasible model communities. Journal of Theoretical Biology, 253, 162–169.MathSciNetCrossRefGoogle Scholar
- Cohen, J. E., & Briand, F. (1984). Trophic links of community food webs. Proceedings of the National Academy of Sciences of the United States of America, 81, 4105–4109.MATHCrossRefGoogle Scholar
- Cohen, J. E., & Newman, C. M. (1985). A stochastic theory of community food webs. Proceedings of the Royal Society of London B, 224, 421–448.CrossRefGoogle Scholar
- Cohen, J. E., Briand, F., & Newman, C. M. (1990). Community food webs: Data and theory. Biomathematics 20. Berlin: Springer.MATHCrossRefGoogle Scholar
- D’Alelio, D., Libralato, S., Wyatt, T., et al. (2016). Ecological-network models link diversity, structure and function in the plankton food-web. Scientific Reports, 6, 21806.CrossRefGoogle Scholar
- Darwin, C. (1862). On the various contrivances by which British and foreign orchids are fertilized by insect. London: Murray.Google Scholar
- De Angelis, D. L. (1975). Stability and connectance in food web models. Ecology, 56, 238–243.CrossRefGoogle Scholar
- De Ruiter, P. C., Neutel, A.-M., & Moore, J. C. (1995). Energetics, patterns of interaction strengths, and stability in real ecosystems. Science, 269, 1257–1260.CrossRefGoogle Scholar
- Donohue, I., Petchey, O. L., Montoya, J. M., et al. (2013). On the dimensionality of ecological stability. Ecology Letters, 16, 421–429.CrossRefGoogle Scholar
- Dormann, C. F., Fründ, J., Blüthgen, N., et al. (2009). Indices, graphs and null models: Analysing bipartite ecological networks. The Open Ecology Journal, 2, 7–24.CrossRefGoogle Scholar
- Dunne, J. A., & Williams, R. J. (2009). Cascading extinctions and community collapse in model food webs. Philosophical Transactions of the Royal Society of London B, 364, 1711–1725.CrossRefGoogle Scholar
- Dunne, J. A., Williams, R. J., & Martinez, N. D. (2002a). Food-web structure and network theory: The role of connectance and size. Proceedings of the National Academy of Sciences of the United States of America, 99, 12917–12922.CrossRefGoogle Scholar
- Dunne, J. A., Williams, R. J., & Martinez, N. D. (2002b). Network structure and biodiversity loss in food webs: Robustness increases with connectance. Ecology Letters, 8, 558–567.CrossRefGoogle Scholar
- Dunne, J. A., Williams, R. J., & Martinez, N. D. (2004). Network structure and robustness of marine food webs. Marine Ecology Progress Series, 273, 291–302.CrossRefGoogle Scholar
- Dupont, Y. L., & Olesen, J. M. (2012). Stability of modularity and structural keystone species in temporal cumulative plant-flower-visitor networks. Ecological Complexity, 11, 84–90.CrossRefGoogle Scholar
- Ehrlich, P. R., & Raven, P. H. (1964). Butterflies and plants: A study in coevolution. Evolution, 18, 586–608.CrossRefGoogle Scholar
- Elton, C. S. (1958). Ecology of invasions by animals and plants. London: Chapman and Hall.CrossRefGoogle Scholar
- Emmerson, M. C., & Raffaelli, D. (2004). Predator-prey body size, interaction strength and the stability of a real food web. Journal of Animal Ecology, 73, 399–409.CrossRefGoogle Scholar
- Emmerson, M. C., & Yearsley, J. M. (2004). Weak interactions, omnivory and emergent food-web properties. Proceedings of the Royal Society of London B, 271, 397–405.CrossRefGoogle Scholar
- Feng, W., & Takemoto, K. (2014). Heterogeneity in ecological mutualistic networks dominantly determines community stability. Scientific Reports, 4, 5912.CrossRefGoogle Scholar
- Ferrière, R., Bronstein, J. L., Rinaldi, S., et al. (2002). Cheating and the evolutionary stability of mutualisms. Proceedings of the Royal Society of London B, 269, 773–780.CrossRefGoogle Scholar
- Fowler, M. S. (2009). Increasing community size and connectance can increase stability in competitive communities. Journal of Theoretical Biology, 258, 179–188.MathSciNetCrossRefGoogle Scholar
- Fussman, G. F., Loreau, M., & Abrams, P. (2007). Eco-evolutionary dynamics of communities and ecosystems. Functional Ecology, 21, 465477.CrossRefGoogle Scholar
- Goldwasser, L., & Roughgarden, J. (1993). Construction of a large Caribbean food web. Ecology, 74, 1216–1233.CrossRefGoogle Scholar
- Gravel, D., Massol, F., & Leibold, M. A. (2016). Stability and complexity in model meta-communities. Nature Communications, 7, 12457.CrossRefGoogle Scholar
- Grilli, J., Rogers, T., & Allesina, S. (2016). Modularity and stability in ecological networks. Nature Communications, 7, 12031.CrossRefGoogle Scholar
- Gross, T., Rudolf, L., Levin, S. A., et al. (2009). Generalized models reveal stabilizing factors in food webs. Science, 325, 747–750.CrossRefGoogle Scholar
- Gross, T., & Sayama, H. (Eds.). (2009). Adaptive networks: Theory, models and applications. Berlin: Springer.Google Scholar
- Havens, K. (1992). Scale and structure in natural food webs. Science, 257, 1107–1109.CrossRefGoogle Scholar
- Haydon, D. (1994). Pivotal assumptions determining the relationship between stability and complexity: An analytical synthesis of the stability-complexity debate. American Naturalist, 144, 14–29.CrossRefGoogle Scholar
- Haydon, D. (2000). Maximally stable model ecosystems can be highly connected. Ecology, 81, 2631–2636.CrossRefGoogle Scholar
- Heckmann, L., Drossel, B., Brose, U., et al. (2012). Interactive effects of body-size structure and adaptive foraging on food-web stability. Ecology Letters, 15, 243–250.CrossRefGoogle Scholar
- Heleno, R., Devoto, M., & Pocock, M. (2012). Connectance of species interaction networks and conservation value: Is it any good to be well connected? Ecological Indicators, 14, 7–10.CrossRefGoogle Scholar
- Herrera, C. M. (1985). Determinants of plant-animal coevolution: The case of mutualistic dispersal of seeds by vertebrates. Oikos, 44, 132–141.CrossRefGoogle Scholar
- Hughes, J. B., & Roughgarden, J. (1998). Aggregate community properties and the strength of species’ interactions. Proceedings of the National Academy of Sciences of the United States of America, 95, 6837–6842.CrossRefGoogle Scholar
- Hui, C., & Richardson, D. M. (2017). Invasion dynamics. Oxford University Press.Google Scholar
- Hui, C., Richardson, D. M., Landi, P., et al. (2016). Defining invasiveness and invasibility in ecological networks. Biological Invasions, 18, 971–983.CrossRefGoogle Scholar
- Ingram, T., Harmon, L. J., & Shurin, J. B. (2009). Niche evolution, trophic structure, and species turnover in model food webs. American Naturalist, 174, 56–67.CrossRefGoogle Scholar
- Ives, A. R., Klug, J. L., & Gross, K. (2000). Stability and species richness in complex communities. Ecology Letters, 3, 399–411.CrossRefGoogle Scholar
- Jacquet, C., Moritz, C., Morissette, L., et al. (2016). No complexity-stability relationship in empirical ecosystems. Nature Communications, 7, 12573.CrossRefGoogle Scholar
- James, A., Pitchford, J. W., & Plank, M. J. (2012). Disentangling nestedness from models of ecological complexity. Nature, 487, 227–230.CrossRefGoogle Scholar
- Jordano, P. (1987). Patterns of mutualistic interactions in pollination and seed dispersal: Connectance, dependence asymmetries, and coevolution. American Naturalist, 129, 657–677.CrossRefGoogle Scholar
- Jordano, P., Bascompte, J., & Olesen, J. M. (2003). Invariant properties in coevolutionary networks of plant animal interactions. Ecology Letters, 6, 69–81.CrossRefGoogle Scholar
- Kaiser-Bunbury, C. N., & Blutghen, N. (2015). Integrating network ecology with applied conservation: A synthesis and guide to implementation. AoB Plants, 7, plv076.CrossRefGoogle Scholar
- Kokkoris, G. D., Troumbis, A. Y., & Lawton, J. H. (1999). Patterns of species interaction strength in assembled theoretical competition communities. Ecology Letters, 2, 70–74.CrossRefGoogle Scholar
- Kokkoris, G. D., Jansen, V. A. A., Loreau, M., et al. (2002). Variability in interaction strength and implications for biodiversity. Journal of Animal Ecology, 71, 362–371.CrossRefGoogle Scholar
- Kondoh, M. (2003). Foraging adaptation and the relationship between food-web complexity and stability. Science, 299, 1388–1391.CrossRefGoogle Scholar
- Kondoh, M. (2005). Is biodiversity maintained by food-web complexity? The adaptive food-web hypothesis. In Acquatic food webs: An ecosystem approach (pp. 130–142). Oxford University Press.CrossRefGoogle Scholar
- Kondoh, M. (2006). Does foraging adaptation create the positive complexity-stability relationship in realistic food-web structure? Journal of Theoretical Biology, 238, 646–651.MathSciNetCrossRefGoogle Scholar
- Kondoh, M. (2007). Anti-predator defence and the complexity-stability relationship of food webs. Proceedings of the Royal Society of London B, 274, 1617–1624.CrossRefGoogle Scholar
- Krause, A. E., Frank, K. A., Mason, D. M., et al. (2003). Compartments revealed in food-web structure. Nature, 426, 282–285.CrossRefGoogle Scholar
- Landi, P., Dercole, F., & Rinaldi, S. (2013). Branching scenarios in eco-evolutionary prey-predator models. SIAM Journal on Applied Mathematics, 73, 1634–1658.MathSciNetMATHCrossRefGoogle Scholar
- Landi, P., & Piccardi, C. (2014). Community analysis in directed networks: In-, out-, and pseudocommunities. Physical Review E, 89, 012814.CrossRefGoogle Scholar
- Lawlor, L. R. (1978). Comment on randomly constructed model ecosystems. American Naturalist, 111, 445–447.CrossRefGoogle Scholar
- Lawlor, L. R. (1980). Structure and stability in natural and randomly constructed competitive communities. American Naturalist, 116, 394–408.MathSciNetCrossRefGoogle Scholar
- Lehman, C. L., & Tilman, D. (2000). Biodiversity, stability, and productivity in competitive communities. American Naturalist, 156, 534–552.CrossRefGoogle Scholar
- Logofet, D. O. (2005). Stronger-than-Lyapunov notions of matrix stability, or how “flowers” help solve problems in mathematical ecology. Linear Algebra and its Applications, 398, 75–100.MathSciNetMATHCrossRefGoogle Scholar
- Loreau, M., & de Mazancourt, C. (2013). Biodiversity and ecosystem stability: A synthesis of underlying mechanisms. Ecology Letters, 16, 106–115.CrossRefGoogle Scholar
- Lyapunov, A. M. (1992). The general problem of the stability of motion. London: Taylor & Francis.MATHGoogle Scholar
- May, R. M. (1973). Stability and complexity in model ecosystems. Princeton University Press.Google Scholar
- MacArthur, R. H. (1955). Fluctuations of animal populations and a measure of community stability. Ecology, 36, 533–536.CrossRefGoogle Scholar
- Martinez, N. D. (1992). Constant connectance in community food webs. American Naturalist, 139, 1208–1218.CrossRefGoogle Scholar
- McCann, K., Hastings, A., & Huxel, G. R. (1998). Weak trophic interactions and the balance of nature. Nature, 395, 794–798.CrossRefGoogle Scholar
- Martinez, N. D. (1994). Scale-dependent constraints on food-web structure. American Naturalist, 144, 935–953.CrossRefGoogle Scholar
- Mello, M. A. R., Marquitti, V. M. D., Guimarães Jr., P. R., et al. (2011). The modularity of seed dispersal: Differences in structure and robustness between bat– and bird–fruit networks. Oecologia, 167, 131–140.CrossRefGoogle Scholar
- Memmott, J. (1999). The structure of a plant-pollinator food web. Ecology Letters, 2, 276–280.CrossRefGoogle Scholar
- Memmott, J., Waser, N. M., & Price, M. V. (2004). Tolerance of pollination networks to species extinctions. Proceedings of the Royal Society of London B, 271, 2605–2611.CrossRefGoogle Scholar
- Memmot, J. (2009). Food webs: A ladder for picking strawberries or a practical tool for practical problems? Philosophical Transactions of the Royal Society of London B, 364, 1693–1699.Google Scholar
- Millennium Ecosystem Assessment. (2005). Ecosystems and human well-being: Synthesis. Washington: Island Press.Google Scholar
- Minoarivelo, H. O., & Hui, C. (2016). Trait-mediated interaction leads to structural emergence in mutualistic networks. Evolutionary Ecology, 30, 105–121.CrossRefGoogle Scholar
- Montoya, J. M., & Solé, R. V. (2002). Small world patterns in food webs. Journal of Theoretical Biology, 214, 405–4012.CrossRefGoogle Scholar
- Moore, J. C., & Hunt, H. W. (1988). Resource compartmentation and the stability of real ecosystems. Nature, 333, 261–263.CrossRefGoogle Scholar
- Neubert, M. G., & Caswell, H. (1997). Alternatives to resilience for measuring the responses of ecological systems to perturbations. Ecology, 78, 653–665.CrossRefGoogle Scholar
- Neutel, A.-M., Heesterbeek, J. A. P., & de Ruiter, P. C. (2002). Stability in real food webs: Weak links in long loops. Science, 296, 1120–1123.CrossRefGoogle Scholar
- Neutel, A.-M., Heesterbeek, J. A. P., van de Koppel, J., et al. (2007). Reconciling complexity with stability in naturally assembling food webs. Nature, 449, 599–603.CrossRefGoogle Scholar
- Newman, M., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69, 026113.CrossRefGoogle Scholar
- Nuwagaba, S., Zhang, F., & Hui, C. (2015). A hybrid behavioural rule of adaptation and drift explains the emergent architecture of antagonistic networks. Proceedings of the Royal Society of London B, 282, 20150320.CrossRefGoogle Scholar
- Odum, E. P. (1953). Fundamentals of ecology. Philadelphia: Saunders.Google Scholar
- Okuyama, T. (2008). Do mutualistic networks follow power distributions? Ecological Complexity, 5, 59–65.CrossRefGoogle Scholar
- Okuyama, T., & Holland, J. N. (2008). Network structural properties mediate the stability of mutualistic communities. Ecology Letters, 11, 208–216.CrossRefGoogle Scholar
- Olesen, J. M., & Jordano, P. (2002). Geographic patterns in plant-pollinator mutualistic networks. Ecology, 83, 2416–2424.Google Scholar
- Olesen, J. M., Eskildsen, L. I., & Venkatasamy, S. (2002). Invasion of pollination networks on oceanic islands: Importance of invader complexes and endemic super generalists. Diversity and Distributions, 8, 181–192.CrossRefGoogle Scholar
- Olesen, J. M., Bascompte, J., Dupont, Y. L., et al. (2007). The modularity of pollination networks. Proceedings of the National Academy of Sciences of the United States of America, 104, 19891–19896.CrossRefGoogle Scholar
- Olff, H., Alonso, D., Berg, M. P., et al. (2009). Parallel ecological networks in ecosystems. Philosophical Transactions of the Royal Society of London B, 364, 1755–1779.CrossRefGoogle Scholar
- Olito, C., & Fox, J. W. (2014). Species traits and relative abundances predict metrics of plant-pollinator network structure, but not pairwise interactions. Oikos, 124, 428–436.CrossRefGoogle Scholar
- Olivier, T. H., Leather, S. R., & Cook, J. M. (2009). Tolerance traits and the stability of mutualism. Oikos, 118, 346–352.CrossRefGoogle Scholar
- Otto, S. B., Rall, B. C., & Brose, U. (2007). Allometric degree distributions facilitate food-web stability. Nature, 450, 1226–1229.CrossRefGoogle Scholar
- Paine, R. T. (1992). Food-web analysis through field measurement of per capita interaction strength. Nature, 355, 73–75.CrossRefGoogle Scholar
- Petanidou, T., Kallimanis, A. S., Tzanopoulos, J., et al. (2008). Long-term observation of a pollination network: Fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization. Ecology Letters, 11, 564–575.CrossRefGoogle Scholar
- Pimm, S. L. (1979). Complexity and stability: Another look at MacArthur’s original hypothesis. Oikos, 33, 251–257.CrossRefGoogle Scholar
- Pimm, S. L. (1980a). Properties of food webs. Ecology, 61, 219–225.CrossRefGoogle Scholar
- Pimm, S. L. (1980b). Food web design and the effect of species deletion. Oikos, 35, 139–149.CrossRefGoogle Scholar
- Pimm, S. L. (1984). The complexity and stability of ecosystems. Nature, 307, 321–326.CrossRefGoogle Scholar
- Pimm, S. L., & Lawton, J. H. (1978). On feeding on more than one trophic level. Nature, 275, 542–544.CrossRefGoogle Scholar
- Pimm, S. L., Lawton, J. H., & Cohen, J. E. (1991). Food web patterns and their consequences. Nature, 350, 669–674.CrossRefGoogle Scholar
- Pocock, M. J. O., Evans, D. M., Fontaine, C., et al. (2016). The visualization of ecological networks, and their use as a tool for engagement, advocacy and management. Advances in Ecological Research, 54, 41–85.CrossRefGoogle Scholar
- Poisot, T., & Gravel, D. (2014). When is an ecological network complex? Connectance drives degree distribution and emerging network properties. PeerJ, 2, e251.CrossRefGoogle Scholar
- Polis, G. (1991). Complex trophic interactions in deserts: An empirical critique of food web theory. American Naturalist, 138, 123–155.CrossRefGoogle Scholar
- Ramos-Jiliberto, R., Valdovinos, F. S., de Espanés, P. M., et al. (2012). Topological plasticity increases robustness of mutualistic networks. Journal of Animal Ecology, 81, 896–904.CrossRefGoogle Scholar
- Rezende, E. L., Jordano, P., & Bascompte, J. (2007). Effects of phenotypic complementarity and phylogeny on the nested structure of mutualistic networks. Oikos, 116, 1919–1929.CrossRefGoogle Scholar
- Rinaldi, S., Della Rossa, F., Dercole, F., et al. (2015). Modeling love dynamics. Singapore: World Scientific.Google Scholar
- Rohr, R. P., Saavedra, S., & Bascompte, J. (2014). On the structural stability of mutualistic systems. Science, 345, 1253497.CrossRefGoogle Scholar
- Rosvall, M., & Bergstrom, C. T. (2007). An information-theoretic framework for resolving community structure in complex networks. Proceedings of the National Academy of Sciences of the United States of America, 104, 7327–7331.CrossRefGoogle Scholar
- Rooney, N., McCann, K., Gellner, G., et al. (2006). Structural asymmetry and the stability of diverse food webs. Nature, 444, 265–269.CrossRefGoogle Scholar
- Saint-Béat, B., Baird, D., Asmus, H., et al. (2015). Trophic networks: How do theories link ecosystem structure and functioning to stability properties? A review. Ecological Indicators, 52, 458–471.CrossRefGoogle Scholar
- Shannon, C. E. (1948). A mathematical theory of communication. AT&T Technology Journal, 27, 379–342.MathSciNetMATHCrossRefGoogle Scholar
- Schoener, T. W. (1989). Food webs from the small to the large. Ecology, 70, 1559–1589.CrossRefGoogle Scholar
- Small, M., Judd, K., & Stemler, T. (2013). The stability of networks—Towards a structural dynamical systems theory. ArXiv.Google Scholar
- Solé, R. V., & Montoya, J. (2001). Complexity and fragility in ecological networks. Proceedings of the Royal Society of London B, 268, 2039–2045.CrossRefGoogle Scholar
- Song, Z., & Fledman, M. W. (2014). Adaptive foraging behaviour of individual pollinators and the coexistence of co-flowering plants. Proceedings of the Royal Society of London B, 281, 20132437.CrossRefGoogle Scholar
- Sprules, W. G., & Bowerman, J. E. (1988). Omnivory and food chain length in zooplankton food webs. Ecology, 69, 418–426.CrossRefGoogle Scholar
- Strona, G., & Lafferty, K. D. (2016). Environmental change makes robust ecological networks fragile. Nature Communications, 7, 12462.CrossRefGoogle Scholar
- Stouffer, D. B., & Bascompte, J. (2011). Compartmentalization increases food-web persistence. Proceedings of the National Academy of Sciences of the United States of America, 108, 3648–3652.CrossRefGoogle Scholar
- Suweis, S., Grilli, J., Banavar, J. R., et al. (2015). Effect of localization on the stability of mutualistic ecological networks. Nature Communications, 6, 10179.CrossRefGoogle Scholar
- Thébault, E., & Fontaine, C. (2010). Stability of ecological communities and the architecture of mutualistic and trophic interactions. Science, 329, 853–856.CrossRefGoogle Scholar
- Tylianakis, J. M., Tscharntke, T., & Lewis, O. T. (2007). Habitat modification alters the structure of tropical host-parasitoid food webs. Nature, 445, 202–205.CrossRefGoogle Scholar
- Tylianakis, J. M., Laliberte, E., Nielsen, A., et al. (2010). Conservation of species interaction networks. Biological Conservation, 143, 2270–2279.CrossRefGoogle Scholar
- Valdovinos, F. S., de Espanés, P. M., Flores, J. D., et al. (2013). Adaptive foraging allows the maintenance of biodiversity of pollination networks. Oikos, 122, 907–917.CrossRefGoogle Scholar
- Valdovinos, F. S., Ramos-Jiliberto, R., Garay-Narvaez, L., et al. (2010). Consequences of adaptive behaviour for the structure and dynamics of food webs. Ecology Letters, 13, 1546–1559.CrossRefGoogle Scholar
- van Altena, C., Hemerik, L., & de Ruiter, P. C. (2016). Food web stability and weighted connectance: The complexity stability debate revisited. Theoretical Ecology, 9, 49–58.CrossRefGoogle Scholar
- Vázquez, D. P., & Aizen, M. A. (2003). Null model analyses of specialization in plant–pollinator interactions. Ecology, 84, 2493–2501.CrossRefGoogle Scholar
- Vieira, M. C., & Almeida-Neto, M. (2015). A simple stochastic model for complex coextinctions in mutualistic networks: Robustness decreases with connectance. Ecology Letters, 18, 144–152.CrossRefGoogle Scholar
- Visser, A. W., Mariani, P., & Pigolotti, S. (2012). Adaptive behaviour, tri-trophic food-web stability and damping of chaos. Journal of the Royal Society, Interface, 9, 1373–1380.CrossRefGoogle Scholar
- Waser, N. M., Chittka, L., Price, M. V., et al. (1996). Generalization in pollination systems, and why it Matters. Ecology, 77, 1043–1060.CrossRefGoogle Scholar
- West, S. A., Kiers, E. T., Pen, I., et al. (2002). Sanctions and mutualism stability: When should less beneficial mutualists be tolerated? Journal of Evolutionary Biology, 15, 830–837.CrossRefGoogle Scholar
- Williams, R. J., & Martinez, N. D. (2000). Simple rules yield complex food web. Nature, 404, 180–183.CrossRefGoogle Scholar
- Wheelwright, N. T., & Orians, G. H. (1982). Seed dispersal by animals: Contrasts with pollen dispersal, problems of terminology, and constraints on coevolution. American Naturalist, 119, 402–413.CrossRefGoogle Scholar
- Wolanski, E., & McLusky, D. (Eds.). (2011). Treatise on estuarine and coastal science. Amsterdam: Elsevier.Google Scholar
- Wootton, J. T., & Emmerson, M. (2005). Measurement of interaction strength in nature. Annual Reviews of Ecology and Systematics, 36, 419–444.CrossRefGoogle Scholar
- Yodzis, P. (1981). The stability of real ecosystems. Nature, 289, 674–676.CrossRefGoogle Scholar
- Zhang, F., Hui, C., & Terblanche, J. S. (2011). An interaction switch predicts the nested architecture of mutualistic networks. Ecology Letters, 14, 797–803.CrossRefGoogle Scholar
- Zhang, F., Hui, C., & Pauw, A. (2013). Adaptive divergence in Darwin’s race: how coevolution can generate trait diversity in a pollination system. Evolution, 67, 548–560.CrossRefGoogle Scholar