Resilience Measures in Ecosystems and Socioeconomic Networks

  • Ursula M. Scharler
  • Brian D. Fath
  • Arnab Banerjee
  • Delin Fang
  • Le Feng
  • Joyita Mukherjee
  • Linlin Xia
Chapter

Abstract

Background and Significance of the topic: This chapter contributes to the documentation of novel network-based resilience concepts to socio-ecological systems. Although the resilience concept has been studied in depth in ecological systems, it surely has relevance outside this area and in recent years has been a main domain of study for socioeconomic systems. This chapter provides an overview of the application of resilience concepts in ecology, with a particular focus on the application of two methods developed using ecological network analysis. Methodology: The first method uses information-theory based network analysis to ascertain the trade-off between efficiency and redundancy in networks (in terms of the structure and flows). The second method uses an energy-flow based method to assess keystoneness and the direct and indirect relations in the networks. Application/Relevance to systems analysis: Earlier work using information-theory based network analysis has shown that ecological systems display a robust balance between efficiency and redundancy in networks (in terms of the structure and flows) thereby bestowing them with robust and resilient features. Results indicate that a dam ecosystem in southwest China falls just short of the optimum but suffers substantial loss of robustness when the phytoplankton community is perturbed. Application to a virtual water network shows the system is not near the robustness peak. Using the energy-flow based method, a South African estuary showed alteration of the keystone species depending on the seasonality; a land use change model of Beijing showed a decrease in mutualism due to urban expansion. Policy and/or practice implications: The case studies presented illustrate the application of ecological network analysis. Positive and negative relations between sectors of ecosystems or economic systems highlight the influence of various species and economies on one another, resulting in a comprehensive picture of relations, impacts and therefore management options to achieve balance between sectors. Discussion and conclusion: Overall, networks provided a useful model to illustrate system resilience measures, and other system analysis methods of direct and indirect impacts of system components on each other.

References

  1. Admiraal, J. F., Wossink, A., De Groot, W. T., & De Snoo, G. R. (2013). More than total economic value: How to combine economic valuation of biodiversity with ecological resilience. Ecological Economics, 89, 115–122.CrossRefGoogle Scholar
  2. Allesina, S., & Pascual, M. (2008). Network structure, predator—prey modules, and stability in large food webs. Theoretical ecology, 1, 55–64.CrossRefGoogle Scholar
  3. Carpenter, S., Walker, B., Anderies, J. M., & Abel, N. (2001). From metaphor to measurement: Resilience of what to what? Ecosystems, 4, 765–781.CrossRefGoogle Scholar
  4. Chapin IIIi, F. S., Zavaleta, E. S., Eviner, V. T., Naylor, R. L., Vitousek, P. M., Reynolds, H. L., Hooper, D. U., Lavorel, S., Sala, O. E., Hobbie, S. E., Mack, M.C., & Díaz, S. (2000). Consequences of changing biodiversity. Nature 405, 235–242.Google Scholar
  5. Chen, S., Fath, B. D., Chen, B. (2011). Information-based network environ analysis: A system perspective for ecological risk assessment. Ecological Indicators, 11(6), 1664–1672.CrossRefGoogle Scholar
  6. Chen, X., & Cohen, J. E. (2001). Transient dynamics and food-web complexity in the Lotka-Volterra cascade model. Proceedings of the Royal Society of London. Series B, Biological Sciences, 268, 869–877.CrossRefGoogle Scholar
  7. Cheng, G. D., Xiao, H. L., Xu, Z. M., Li, J. X., & Lu, M. F. (2006). Water issue and its counter-measure in the inland river basins of Northwest China—a case study in Heihe River Basin. Journal of Glaciology and Geocryology, 3, 406–413.Google Scholar
  8. Christensen, V., & Walters, C. J. (2004). Ecopath with ecosim: Methods, capabilities and limitations. Ecological Modelling, 172, 109–139.CrossRefGoogle Scholar
  9. Chrystal, R. A., & Scharler, U. M. (2014). Network analysis indices reflect extreme hydrodynamic conditions in a shallow estuarine lake (Lake St Lucia), South Africa. Ecological indicators, 38, 130–140.CrossRefGoogle Scholar
  10. Denman, K. L., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P. M., Dickinson, R. E., Hauglustaine, D., Heinze, C., Holland, E., Jacob, D., Lohmann, U., Ramachandran, S., da Silva Dias, P. L., Wofsy, S. C., & Zhang, X. (2007). Couplings between changes in the climate system and biogeochemistry. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment. Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.Google Scholar
  11. Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z.-I., Knowler, D. J., Lévêque, C., Naiman, R. J., Prieur-Richard, A.-H., Soto, D., Stiassny, M.L.J., Sullivan, C.A. (2006). Freshwater biodiversity : Importance, threats, status and conservation challenges. Biological reviews of the Cambridge Philosophical Society, 81(2), 163–182.CrossRefGoogle Scholar
  12. Elliott, M., & Quintino, V. (2007). The estuarine quality paradox, environmental homeostasis and the difficulty of detecting anthropogenic stress in naturally stressed areas. Marine Pollution Bulletin, 54, 640–646.CrossRefGoogle Scholar
  13. Elmqvist, T., Folke, C., Nyström, M., Peterson, G., Bengtsson, J., & Walker, B. (2003). Response diversity, ecosystem change, and resilience. Frontiers in Ecology and the Environment, 1, 488–494.CrossRefGoogle Scholar
  14. Elton, C. S. (1958). Ecology of invasions by animals and plants. London: Chapman & Hall.CrossRefGoogle Scholar
  15. Fang, D., Fath, B. D., Chen, B., & Scharler, U. M. (2014). Network environ analysis for socio-economic water system. Ecological indicators, 47, 80–88.CrossRefGoogle Scholar
  16. Fath, B. (1998). Network synergism: Emergence of positive relations in ecological systems. Ecological Modelling, 107, 127–143.CrossRefGoogle Scholar
  17. Fath, B. D., Scharler, U., Ulanowicz, R. E., & Hannon, B. (2007). Ecological network analysis: network construction. Ecological Modelling, 208, 49–55.CrossRefGoogle Scholar
  18. Fath, B. D., Dean, C. A., & Katzmair, H. (2015). Navigating the adaptive cycle: An approach to managing the resilience of social systems. Ecology and Society, 20(2), 24.CrossRefGoogle Scholar
  19. Folke, C. (2006). Resilience: The emergence of a perspective for social—ecological systems analyses. Global Environmental Change, 16, 253–267.CrossRefGoogle Scholar
  20. Folke, C., Carpenter, S., Walker, B., Scheffer, M., Elmqvist, T., Gunderson, L., et al. (2004). Regime shifts, resilience, and biodiversity in ecosystem management. Annual Review of Ecology Evolution and Systematics, 35, 557–581.CrossRefGoogle Scholar
  21. Gamfeldt, L., & Hillebrand, H. (2008). Biodiversity effects on aquatic ecosystem functioning—maturation of a new paradigm. International Review of Hydrobiology, 93, 550–564.CrossRefGoogle Scholar
  22. Goerner, S. J., Lietaer, B., & Ulanowicz, R. E. (2009). Quantifying economic sustainability: Implications for free-enterprise theory, policy and practice. Ecological Economics, 69, 76–81.CrossRefGoogle Scholar
  23. Grilli, J., Rogers, T., & Allesina, S. (2016). Modularity and stability in ecological communities. Nature Communications, 7, 12031.CrossRefGoogle Scholar
  24. Gunderson, L. H., & Holling, C. S. (Eds.). (2002). Panarchy: Understanding transformations in human and natural systems. Washington DC: Island Press.Google Scholar
  25. Higashi, M., & Patten, B. C. (1989). Dominance of indirect causality in ecosystems. The American Naturalist, 133, 288–302.CrossRefGoogle Scholar
  26. Higashi, M., & Nakajima, H. (1995). Indirect effects in ecological interaction networks. I. The chain rule approach. Mathematical Biosciences, 130, 99–128.MathSciNetCrossRefGoogle Scholar
  27. Holling, C. S. (1973). Resilience and the stability of ecological systems. Annual Review of Ecology and Systematics, 4, 1–23.CrossRefGoogle Scholar
  28. Holling, C. S. (1986). The resilience of terrestrial ecosystems: local surprise and global change. In W. C. Clark & R. E. Munn (Eds.), Sustainable Development of the Biosphere. London: Cambridge University Press.Google Scholar
  29. Hughes, T. P., Baird, A. H., Bellwood, D. R., Card, M., Connolly, S. R., Folke, C., et al. (2003). Climate change, human impacts, and the resilience of coral reefs. Science, 301, 929–934.CrossRefGoogle Scholar
  30. IPCC—Report of the intergovernmental panel on climate change (2007). Fourth Assessment Report. Climate change 2007: Synthesis report. Cambridge University Press. ISBN 92-9169-122-4.Google Scholar
  31. Jørgensen, S. E., Fath, B. D., Nielsen, S. N., Pulselli, F., Fiscus, D., Bastianoni, S. (2015). Flourishing within limits to growth: Following nature’s way. Earthscan Publisher. 220 p.Google Scholar
  32. Kharrazi, A., Rovenskaya, E., Fath, B. D., Yarime, M., & Kraines, S. (2013). Quantifying the sustainability of economic resource networks: An ecological information-based approach. Ecological Economics, 90, 177–186.CrossRefGoogle Scholar
  33. Kharrazi, A., Fath, B. D., & Katzmair, H. (2016). Advancing empirical approaches to the concept of resilience: A critical examination of panarchy, ecological information, and statistical evidence. Sustainability, 8, 935.CrossRefGoogle Scholar
  34. Kharrazi, A., Rovenskaya, E., & Fath, B. D. (2017). Network structure impacts global commodity trade growth and resilience. PLoS ONE, 12(2), e0171184.  https://doi.org/10.1371/journal.pone.0171184.CrossRefGoogle Scholar
  35. Kauppi, P. E., Mielikainen, K., & Kuusela, K. (1992). Biomass and carbon budget of European forest, 1971 to 1990. Science, 256, 70–74.CrossRefGoogle Scholar
  36. Libralato, S., Christensen, V., & Pauly, D. (2006). A method for identifying keystone species in food web models. Ecol. Modell., 195, 153–171.CrossRefGoogle Scholar
  37. Loreau, M. (2000). Biodiversity and ecosystem functioning: Recent theoretical advances. Oikos, 91, 3–17.CrossRefGoogle Scholar
  38. MacArthur, R. H. (1955). Fluctuations of animal populations and a measure of community stability. Ecology, 36, 533–536.CrossRefGoogle Scholar
  39. May, R. M. (1972). Will a large complex system be stable? Nature, 238, 413–414.CrossRefGoogle Scholar
  40. McCann, K. S. (2000). The diversity-stability debate. Nature, 405, 228–233.CrossRefGoogle Scholar
  41. McNaughton, S. J. (1977). Diversity and stability of ecological communities: A comment on the role of empiricism in ecology. The American Naturalist, 111(979), 515–525.CrossRefGoogle Scholar
  42. MEA. (2005). Millenium ecosystem assessment, 2005. http://www.millenniumassessment.org.
  43. Meadows, D. H., Meadows, D. L., Randers, J., & Behrens, W. W., III. (1972). The limits to growth. New York: Universe Books.Google Scholar
  44. Miao, L. J., Cui, L. F., Luan, Y. B., & He, B. (2011). Similarities and differences of Beijing and Shanghai’s land use changes induced by urbanization. Chinese Journal of Metal Science and Technology, 31(4), 398–404.Google Scholar
  45. Moore, J. C., & de Ruiter, P. C. (2012). Energetic Food Webs. An analysis of real and model ecosystems: Oxford University Press.CrossRefGoogle Scholar
  46. Moore, J. C., de Ruiter, P. C., & Hunt, H. W. (1993). Influence of productivity on the stability of real and model ecosystems. Science, 261, 906–908.CrossRefGoogle Scholar
  47. Mori, A. S., Furukawa, T., & Sasaki, T. (2013). Response diversity determines the resilience of ecosystems to environmental change. Biological Reviews of the Cambridge Philosophical Society, 88, 349–364.CrossRefGoogle Scholar
  48. Müller, F., Bergmann, M., Dannowski, R., Dippner, J. W., Gnauck, A., Haase, P., et al. (2016). Assessing resilience in long-term ecological data sets. Ecological indicators, 65, 10–43.CrossRefGoogle Scholar
  49. Mukherjee, J., Scharler, U. M., Fath, B. D., & Ray, S. (2015). Measuring sensitivity of robustness and network indices for an estuarine food web model under perturbations. Ecological Modelling, 306, 160–173.CrossRefGoogle Scholar
  50. Naeem, S., Chapin III, F. S., Costanza, R., Ehrlich, P. R., Golley, F. B., Hooper, D. U., Lawton, J. H., O’Neill, R. V., Mooney, H. A., Sala, O. E., Symstad, A. J., & Tilman, D. (1999). Biodiversity and ecosystem functioning: Maintaining natural life support processes. Issues in Ecology, 4, 1–11. Published by the Ecological Society of America.Google Scholar
  51. Neutel, A.-M., Heesterbeek, J. A. P., & De Ruiter, P. C. (2002). Stability in real food webs: Weak links in long loops. Science, 296, 1120–1123.CrossRefGoogle Scholar
  52. Pimm, S. L. (1982). Foodwebs. London: Chapman and Hall.Google Scholar
  53. Power, M. E., Tilman, D., Estes, J. A., Menge, B. A., Bond, W. J., Mills, L. S., et al. (1996). Challenges in the quest for keystones. BioScience, 46, 609–620.CrossRefGoogle Scholar
  54. Rist, L., Felton, A., Nyström, M., Troell, M., Sponseller, R. A., Bengtsson, J., et al. (2014). Applying resilience thinking to production ecosystems. Ecosphere, 5, 1–11.CrossRefGoogle Scholar
  55. Rutledge, R. W., Basore, B. L., & Mulholland, R. J. (1976). Ecological stability: An information theory viewpoint. Journal of Theoretical Biology, 57, 355–371.CrossRefGoogle Scholar
  56. Salas, A. K., & Borrett, S. B. (2011). Evidence for dominance of indirect effects in 50 trophic ecosystem networks. Ecological Modelling, 222, 1192–1204.CrossRefGoogle Scholar
  57. Scharler, U. M. (2012). Ecosystem development during open and closed phases of temporarily open/closed estuaries on the subtropical east coast of South Africa. Estuarine, Coastal Shelf Science, 108, 119–131.CrossRefGoogle Scholar
  58. Scharler, U. M., & Fath, B. D. (2009). Comparing network analysis methodologies for consumer—resource relations at species and ecosystems scales. Ecological Modelling, 220, 3210–3218.CrossRefGoogle Scholar
  59. Scheffer, M., Carpenter, S., Foley, J. A., Folke, C., & Walker, B. (2001). Catastrophic shifts in ecosystems. Nature, 413, 591–596.CrossRefGoogle Scholar
  60. Shevtsov, J., & Rael, R. (2015). Indirect energy flows in niche model food webs: Effects of size and connectance. PLoS ONE, 10(10), e0137829.CrossRefGoogle Scholar
  61. Szyrmer, I., & Ulanowicz, R. E. (1987). Total flows in ecosystems. Ecological Modelling, 35, 123–136.CrossRefGoogle Scholar
  62. Tilman, D. (1999). The ecological consequences of changes in biodiversity: A search for general principles. Ecology, 80, 1455–1474.Google Scholar
  63. Ulanowicz, R. E. (1986). Growth and development. New York: Springer.CrossRefGoogle Scholar
  64. Ulanowicz, R. E. (2002). Information theory in ecology. Journal of Computational Chemistry, 25, 393–399.CrossRefGoogle Scholar
  65. Ulanowicz, R. E. (2004). Quantitative methods for ecological network analysis. Computers and Chemistry, 28, 321–339.MATHGoogle Scholar
  66. Ulanowicz, R. E. (2009). The dual nature of ecosystem dynamics. Ecological Modelling, 220(16), 1886–1892.CrossRefGoogle Scholar
  67. Ulanowicz, R. E., & Puccia, C. J. (1990). Mixed trophic impacts in ecosystems. COENOSES, 5, 7–16.Google Scholar
  68. Ulanowicz, R., Goerner, S., Lietaer, B., & Gomez, R. (2009). Quantifying sustainability: Resilience, efficiency and the return of information theory. Ecological Complexity, 6, 27–36.CrossRefGoogle Scholar
  69. Wackernagel, M., Schulz, N. B., Deumling, D., Linares, A. C., Jenkins, M., Kapos, V., et al. (2002). Tracking the ecological overshoot of the human economy. PNAS, 99, 9266–9271.CrossRefGoogle Scholar
  70. Wagensberg, J., Garcia, A., & Sole, R. V. (1990). Connectivity and information transfer in flow networks: Two magic numbers in ecology? Bulletin of Mathematical Biology, 52, 733–740.CrossRefGoogle Scholar
  71. Wootton, J. T. (1994). The nature and consequences of indirect effects in ecological communities. Annual Review of Ecology and Systematics, 25(1), 443–466.CrossRefGoogle Scholar
  72. Xia, L., Fath, B. D., Scharler, U. M., & Zhang, Y. (2016). Science of the total environment spatial variation in the ecological relationships among the components of Beijing’s carbon metabolic system. Science of the Total Environment, 544, 103–113.CrossRefGoogle Scholar
  73. Zhang, Y., Xia, L. L., & Xiang, W. N. (2014). Analyzing spatial patterns of urban carbon metabolism: A case study in Beijing, China. Landscape and Urban Planning, 130, 184–200.CrossRefGoogle Scholar
  74. Zorach, A. C., Ulanowicz, R. E. (2003). Quantifying the complexity of flow networks: How many roles are there?. Complexity, 8(3), 68–76.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ursula M. Scharler
    • 1
  • Brian D. Fath
    • 2
    • 3
  • Arnab Banerjee
    • 4
  • Delin Fang
    • 5
  • Le Feng
    • 5
  • Joyita Mukherjee
    • 4
  • Linlin Xia
    • 5
  1. 1.School of Life SciencesUniversity of KwaZulu-NatalDurbanSouth Africa
  2. 2.Department of Biological SciencesTowson UniversityTowsonUSA
  3. 3.Advanced Systems Analysis ProgramInternational Institute for Applied Systems AnalysisLaxenburgAustria
  4. 4.Ecological Modelling Laboratory, Department of ZoologyVisva-Bharati UniversityBolpurIndia
  5. 5.State Key Laboratory of Water Environment Simulation, School of EnvironmentBeijing Normal UniversityBeijingChina

Personalised recommendations