Advertisement

Australian Seagrass Seascapes: Present Understanding and Future Research Directions

  • Gary A. Kendrick
  • Renae K. Hovey
  • Mitchell Lyons
  • Chris Roelfsema
  • Leonardo Ruiz Montoya
  • Stuart Phinn
Chapter

Abstract

Seagrass seascapes are 100s m2 to 1000s of km2 coastal regions in nearshore, sandy to muddy benthic environments that are characterized by the presence of seagrasses. Here we explore the development of seagrass seascape research in Australia. Determining the distribution of seagrasses started with mapping their extent, but improvements in remote sensing and statistical modelling has allowed us assess the large scale spatial distribution and temporal dynamics of seagrass seascapes. We use a case study from Moreton Bay, near Brisbane, Queensland to demonstrate changes in seagrass meadows over time. Terrestrial landscape indices and their use in seagrass studies is reviewed. Some indices perform better to summarize patch to meadow scale changes in the distribution and structure of seagrasses. A case-study is then presented, comparing landscape indices calculated from observed changes in seagrass patches and meadows to a spatially-explicit model simulation, to explore the drivers for changes in the seagrass seascape’s demographic processes, clonal growth and recruitment from seeds. The role of landscape structure in the movement and abundance of associated fauna in seagrass seascapes using landscape approaches is then reviewed. This is followed by a summary outlining directions for future research that combine landscape ecology and remote sensing techniques with population and community biology.

References

  1. Almela ED, Marbà N, Álvarez E, Santiago R, Martínez R, Duarte CM (2008) Patch dynamics of the Mediterranean seagrass Posidonia oceanica: implications for recolonisation process. Aq Bot 89:397–403CrossRefGoogle Scholar
  2. Bax N, Kloser R, Williams A, Gowlett-Holmes K, Ryan T (1999) Seafloor habitat definition for spatial management in fisheries: a case study on the continental shelf of southeast Australia. Oceanol Acta 22:705–720CrossRefGoogle Scholar
  3. Bell SS, Hicks GRF (1991) Marine landscapes and faunal recruitment a field test with seagrasses and copepods. Mar Ecol Prog Ser 73:61–68CrossRefGoogle Scholar
  4. Bell SB, Robbins BD, Jensen SL (1999) Gap dynamics in a seagrass landscape. Ecosystems 2:493–504CrossRefGoogle Scholar
  5. Bell SS, Brooks RA, Robbins BD, Fonseca MS, Hall MO (2001) Faunal response to fragmentation in seagrass habitats: implications for seagrass conservation. Biol Cons 100:115–123CrossRefGoogle Scholar
  6. Bell SS, Fonseca MS, Stafford NB (2006) Seagrass ecology: new contributions from a landscape perspective. In: Larkum AWD, Robert JO, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Dordrecht, Springer, Netherlands, pp 625–645Google Scholar
  7. Boström C, Jackson EL, Simenstad CA (2006) Seagrass landscapes and their effects on associated fauna: a review. Estuar Coast Shelf Sci 68:383–403CrossRefGoogle Scholar
  8. Boström C, Törnroos A, Bonsdorff E (2010) Invertebrate dispersal and habitat heterogeneity: expression of biological traits in a seagrass landscape. J Exp Mar Biol Ecol 390:106–117CrossRefGoogle Scholar
  9. Bowden DA, Rowden AA, Attrill MJ (2001) Effect of patch size and in-patch location on the infaunal macroinvertebrate assemblages of Zostera marina seagrass beds. JExp Mar Biol Ecol 259:133–154CrossRefGoogle Scholar
  10. Brouns JJ (1987) Growth patterns in some Indo-West-Pacific seagrasses. Aq Bot 28:39–61CrossRefGoogle Scholar
  11. Cambridge ML (1999) Growth strategies of Rottnest Island seagrasses. In DI Walker and FE Wells (eds) The Seagrass Flora and Fauna of Rottnest Island, Western Australia. Western Australia Museum pp 1–24Google Scholar
  12. Cambridge ML, Bastyan GR, Walker DI (2002) Recovery of Posidonia meadows in Oyster Harbour Southwestern Australia. Bull Mar Sci 71:1279–1289Google Scholar
  13. Campey ML, Kendrick GA, Walker DI (2002) Interannual and small-scale spatial variability in sexual reproduction of the seagrasses Posidonia coriacea and Heterozostera tasmanica, southwestern Australia. Aq Bot 74:287–297CrossRefGoogle Scholar
  14. Canal-Vergés P, Potthoff M, Hansen FT, Holmboe N, Rasmussen EK, Flindt MR (2014) Eelgrass re-establishment in shallow estuaries is affected by drifting macroalgae—evaluated by agent-based modeling. Ecol Model 272:116–128CrossRefGoogle Scholar
  15. Carruthers TJB, Dennison WC, Kendrick GA, Waycott M, Walker DI, Cambridge ML (2007) Seagrasses of south–west Australia: a conceptual synthesis of the world’s most diverse and extensive seagrass meadows. JExp Mar Biol Ecol 350:21–45CrossRefGoogle Scholar
  16. Clarke SM, Kirkman H (1989) Seagrass dynamics. In: Larkum AWD, McComb AJ, Shepherd SA (eds) Biology of the seagrasses: a treatise on the biology of seagrasses with special reference to the Australian region. Elsevier/North Holland, Amsterdam, pp 304–345Google Scholar
  17. Connolly RM, Hindell JS (2006) Review of nekton patterns and ecological processes in seagrass landscapes. Estuar Coast Shelf Sci 68:433–444CrossRefGoogle Scholar
  18. D’Eon R, Glen SM (2000) Perceptions of landscape patterns: do the numbers count? Forest Chronicle 76:475–480CrossRefGoogle Scholar
  19. DeAngelis DL, Grimm V (2014) Individual-based models in ecology after four decades. F1000Prime Reports, vol 6, p 39Google Scholar
  20. Dekker AG, Brando VE, Anstee JM (2005) Retrospective seagrass change detection in a shallow coastal tidal Australian lake. Remote Sens Environ 97:415–433CrossRefGoogle Scholar
  21. Duarte CM, Sand-Jensen K (1990) Seagrass colonization: patch formation and patch growth of Cymodocea nodosa. Mar Ecol Prog Ser 65:193–200CrossRefGoogle Scholar
  22. Duarte CM, Terrados J, Agawin NSR, Fortes MD, Bach S, Kenworthy WJ (1997) Response of a mixed Phillippine seagrass meadow to experimental burial. Mar Ecol Prog Ser 147:285–294CrossRefGoogle Scholar
  23. Durako MJ, Hall MO, Merello M (2002) Patterns of change in the seagrass dominated Florida Bay hydroscape. In: Porter JW, Porter KG (eds) The Everglades, Florida Bay, and coral reefs of the Florida Keys: an ecosystem sourcebook. CRC Press, Washington DC, pp 523–537Google Scholar
  24. Fernández TV, Milazzo M, Badalamenti F, D’Anna G (2005) Comparison of the fish assemblages associated with Posidonia oceanica after the partial loss and consequent fragmentation of the meadow. Estuar Coast Shelf Sci 65:645–653CrossRefGoogle Scholar
  25. Fonseca MS, Bell SS (1998) Influence of physical setting on seagrass landscapes near Beaufort, North Carolina. USA. Mar Ecol Prog Ser 171:109CrossRefGoogle Scholar
  26. Fonseca M, Whitfield PE, Kelly NM, Bell SS (2002) Modelling seagrass landscape pattern and associated ecological attributes. EcolAppl 12:218–237Google Scholar
  27. Frederiksen M, Krause-Jensen D, Holmer M, Laursen JS (2004a) Spatial and temporal variation in eelgrass (Zostera marina) landscapes: influence of physical setting. Aquat Bot 78:147–165CrossRefGoogle Scholar
  28. Frederiksen M, Krause-Jensen D, Holmer M, Laursen JS (2004b) Long-term changes in area distribution of eelgrass (Zostera marina) in Danish coastal waters. Aquat Bot 78:167–181CrossRefGoogle Scholar
  29. Freitas R, Rodrigues AM, Quintino V (2003) Benthic biotopes remote sensing using acoustics. J Exp Marine Biol Ecol 285–286:339–353CrossRefGoogle Scholar
  30. Friedlander A, Nowlis JS, Sanchez JA, Appeldoorn R, Usseglio P, McCormick C, Bejarano S, Mitchell-Chui A (2003) Designing effective marine protected areas in Seaflower Biosphere Reserve, Colombia, based on biological and sociological information. Conserv Biol 17:1769–1784CrossRefGoogle Scholar
  31. Frost MT, Rowden AA, Attrill MJ (1999) Effect of habitat fragmentation on the macroinvertebrate infaunal communities associated with the seagrass Zostera marina L. Aquatic Conservation: Marine and Freshwater Ecosystems 9:255–263CrossRefGoogle Scholar
  32. Garrabou J, Riera J, Zabala M (1998) Landscape pattern indices applied to Mediterranean subtidal rocky benthic communities. Landscape Ecol 13:225–247CrossRefGoogle Scholar
  33. Garza-Perez JR, Lehmann A, Arias-Gonzalez JE (2004) Spatial prediction of coral reef habitats: integrating ecology with spatial modelling and remote sensing. Mar Ecol Prog Ser 269:141–152CrossRefGoogle Scholar
  34. Gustafson EJ (1998) Quantifying landscape spatial pattern: what is the state of the art? Ecosystems 1:143–156CrossRefGoogle Scholar
  35. Gustafson EJ, Parker GR (1992) Relationships between landcover proportion and indices of landscape spatial pattern. Landscape Ecol 7:101–110CrossRefGoogle Scholar
  36. Haines-Young R, Chopping M (1996) Quantifying landscape structure: a review of landscape indices and their application to forested landscapes. Prog Phys Geogr 20:418–445CrossRefGoogle Scholar
  37. Hannan JC, Williams RJ (1998) Recruitment of juvenile marine fishes to seagrass habitat in a temperate Australian estuary. Estuaries 21:29–51CrossRefGoogle Scholar
  38. Hargis CD, Bissonette JA, David JL (1998) The behaviour of landscape metrics commonly used in the study of habitat fragmentation. Landscape Ecol 13:167–186CrossRefGoogle Scholar
  39. Hastings A, Byers JE, Crooks JA, Cuddington K, Jones CG, Lambrinos JG, Talley TS, Wilson WG (2007) Ecosystem engineering in space and time. Ecol Lett 10:153–164PubMedCrossRefPubMedCentralGoogle Scholar
  40. Healey D, Hovel KA (2004) Seagrass bed patchiness: effects on epifaunal communities in San Diego Bay, USA. J Exp Mar Biol Ecol 313:155–174CrossRefGoogle Scholar
  41. Holmes KW, Van Niel KP, Kendrick GA, Radford B (2007) Probabilistic large-area mapping of seagrass species distributions. Aquat Conserv: Mar Freshw Ecosyst 17:385–407CrossRefGoogle Scholar
  42. Holmes KW, Van Niel KP, Radford B, Kendrick GA, Grove SL (2008) Modelling distribution of marine benthos from hydroacoustics and underwater video. Cont Shelf Res 28:1800–1810CrossRefGoogle Scholar
  43. Hovel KA (2003) Habitat fragmentation in marine landscapes: relative effects of habitat cover and configuration on juvenile crab survival in California and North Carolina seagrass beds. Biol Cons 110:401–412CrossRefGoogle Scholar
  44. Hovel KA, Lipcius RN (2001) Habitat fragmentation in a seagrass landscape: patch size and complexity control blue crab survival. Ecology 82:1814–1829CrossRefGoogle Scholar
  45. Hovel KA, Lipcius RN (2002) Effects of seagrass habitat fragmentation on juvenile blue crab survival and abundance. J Exp Marine Biol Ecol 271:75–98CrossRefGoogle Scholar
  46. Hovel KA, Regan H (2008) Using an individual-based model to examine the roles of habitat fragmentation and behavior on predator–prey relationships in seagrass landscapes. Landscape Ecol 23:75–89CrossRefGoogle Scholar
  47. Hovey RK, Van Niel KP, Bellchambers LM, Pember MB (2012) Modelling deep water habitats to develop a spatially explicit, fine scale understanding of the distribution of the western rock lobster Panulirus cygnus. PLoS ONE 7(4):e34476.  https://doi.org/10.1371/journal.pone.0034476CrossRefPubMedPubMedCentralGoogle Scholar
  48. Hovey RK, Zavala Perez A, Statton J, Fraser MW, Ruiz Montoya L, Rees M, Stoddart J, Kendrick GA (2015) Strategy for assessing impacts in highly seasonal tropical seagrasses. Mar Pollut Bull 101:594–599Google Scholar
  49. Hutchinson GE (1953) The concept of pattern in ecology. Proc Acad Nat Sci Philadelphia 104:1–12Google Scholar
  50. Hyland SJ, Courtney AJ, Butler CT (1989) Distribution of seagrass in the Moreton region from Coolangatta to Noosa. Queensland Government Department of Primary Industries, Information Series Q189010. Queensland Government, Brisbane, AustraliaGoogle Scholar
  51. Inglis GJ (2000a) Variation in the recruitment behaviour of seagrass seeds: implications for population dynamics and resource management. Pac Conserv Biol 5:251–259CrossRefGoogle Scholar
  52. Inglis GJ (2000b) Disturbance-related heterogeneity in the seed banks of a marine angiosperm. J Ecol 88:88–99CrossRefGoogle Scholar
  53. Irlandi EA (1994) Large- and small-scale effects of habitat structure on rates of predation: how percent coverage of seagrass affects rates of predation and siphon nipping on an infaunal bivalve. Oecologia 98:176–183PubMedCrossRefPubMedCentralGoogle Scholar
  54. Irlandi EA, Ambrose WG, Orlando BA (1995) Landscape ecology and the marine environment—how spatial configuration of seagrass habitat influences growth and survival of the bay scallop. Oikos 72:307–313CrossRefGoogle Scholar
  55. Jackson EL, Attrill MJ, Rowden AA, Jones MB (2006) Seagrass complexity hierarchies: influence on fish groups around the coast of Jersey (English Channel). J Exp Mar Biol Ecol 330:38–54Google Scholar
  56. Jaeger JAG (2000) Landscape division, splitting index, and effective mesh size: new measures of landscape fragmentation. Landscape Ecol 15:115–130CrossRefGoogle Scholar
  57. Jelbart JE, Ross PM, Connolly RM (2006) Edge effects in seagrass landscapes: an experimental test using fish. Mar Ecol Prog Ser 319:93–102CrossRefGoogle Scholar
  58. Jorge LAB, Garcia GJ (1997) A study of habitat fragmentation in Southeastern Brazil using remote sensing and geographic information systems (GIS). For Ecol Manage 98:35–47CrossRefGoogle Scholar
  59. Kendrick GA, Eckersley J, Walker DI (1999) Landscape-scale changes in seagrass distribution over time: a case study from Success Bank, Western Australia. Aquat Bot 65:293–309CrossRefGoogle Scholar
  60. Kendrick GA, Hegge BJ, Wyllie A, Davidson A, Lord DA (2000) Changes in seagrass cover on Success and Parmelia Banks, Western Australia between 1965 and 1995. Estuar Coast Shelf Sci 50:341–353CrossRefGoogle Scholar
  61. Kendrick GA, Aylward M, Hegge BJ, Cambridge ML, Hillman KA, Wyllie A, Lord DA (2002) Changes in seagrass coverage in Cockburn Sound, Western Australia between 1967 and 1999. Aquat Bot 73:75–87CrossRefGoogle Scholar
  62. Kendrick GA, Marba N, Duarte CM (2005a) Modelling formation of complex topography by the seagrass Posidonia oceanica. Estuar Coast Shelf Sci 65:717–725CrossRefGoogle Scholar
  63. Kendrick GA, Duarte CM, Marba N (2005b) Clonality in seagrasses, emergent properties and seagrass landscapes. Mar Ecol Prog Ser 290:291–296CrossRefGoogle Scholar
  64. Kendrick GA, Holmes KW, Van Niel KP (2008) Multi-scale spatial patterns of three seagrass species with different growth dynamics. Ecography 31:191–200CrossRefGoogle Scholar
  65. Kendrick GA, Waycott M, Carruthers T, Cambridge ML, Hovey R, Krauss S, Lavery P, Les D, Lowe R, Mascaró O, Ooi Lean Sim J, Orth RJ, Rivers D, Ruiz-Montoya L, Sinclair EA, Statton J, van Dijk JK, Verduin J (2012) The central role of dispersal in the maintenance and persistence of seagrass populations. Bioscience 62:56–65CrossRefGoogle Scholar
  66. Kendrick GA, Orth RJ, Statton J, Hovey R, Ruiz-Montoya L, Lowe R, Krauss S, Sinclair EA (2017) Demographic and genetic connectivity: the role and consequences of reproduction, dispersal and recruitment in seagrasses. Biol Rev 92:921–938PubMedCrossRefPubMedCentralGoogle Scholar
  67. Kenny AJ, Cato I, Desprez M, Fader G, Schu¨ttenhelm RTE, Side J (2003) An overview of seabed-mapping technologies in the context of marine habitat classification. ICES J Mar Sci 60:411–418Google Scholar
  68. Kilminster K, McMahon K, Waycott M, Kendrick GA, Scanes P, McKenzie L, O’Brien KR, Lyons M, Ferguson A, Maxwell P, Glasby T, Udy J (2015) Unraveling complexity in seagrass systems for management: Australia as a microcosm. Sci Total Environ 534:97–109PubMedCrossRefPubMedCentralGoogle Scholar
  69. Kirkman H (1985) Community structure in seagrasses in southern Western Australia. Aquat Bot 21:363–375CrossRefGoogle Scholar
  70. Kirkman H (1998) Pilot experiments on planting seedlings and small seagrass propagules in Western Australia. Marine Poll Bull 37:460–467CrossRefGoogle Scholar
  71. Kreft JU, Booth G, Wimpenny JWT (1998) Bacsim, a simulator for individual-based modelling of bacterial colony growth. Microbiology 144:3275–3287PubMedCrossRefPubMedCentralGoogle Scholar
  72. Larkum AWD, West RJ (1990) Long-term changes of seagrass meadows in Botany Bay, Australia. Aquat Bot 37:55–70CrossRefGoogle Scholar
  73. Levin SA, Paine RT (1974) Disturbance, patch formation, and community structure. Proc Natl Acad Sci USA 71:2744–2747PubMedCrossRefPubMedCentralGoogle Scholar
  74. Li BL, Archer S (1997) Weighted mean patch size: a robust index for quantifying landscape structure. Ecol Model 102:353–361CrossRefGoogle Scholar
  75. Luna F, Stefannson B (2000) Economic simulations in SWARM: agent-based modelling and object oriented programming, vol 14. Kluwer Academic PublishersGoogle Scholar
  76. Lyons MB, Roelfsema CM, Phinn SR (2013) Towards understanding temporal and spatial dynamics of seagrass land—scapes using time-series remote sensing. Estuar Coast Shelf Sci 120:42–53CrossRefGoogle Scholar
  77. Lyons MB, Roelfsema CM, Kovacs E, Samper-Villarreal J, Saunders M, Maxwell P, Phinn SR (2015) Rapid monitoring of seagrass biomass using a simple linear modelling approach, in the field and from space. Mar Ecol Prog Ser 530:1–14CrossRefGoogle Scholar
  78. Marba N, Duarte CM (1995) Coupling of seagrass (Cymodocea nodosa) patch dynamics to subaqueous dune migration. J Ecol 83:381–389CrossRefGoogle Scholar
  79. Marba N, Duarte CM (1998) Rhizome elogation and seagrass clonal growth. Mar Ecol Prog Ser 174:269–280CrossRefGoogle Scholar
  80. Marba N, Walker DI (1999) Growth, flowering, and population dynamics of temperate Western Australian seagrasses. Mar Ecol Prog Ser 184:105–118CrossRefGoogle Scholar
  81. McGarigal K (2002) Landscape pattern metrics. In AH El-Shaarawi and WW Piegorsch (eds) Encyclopedia of Environmentrics, vol 2, Wiley, Sussex, pp 1135–1142Google Scholar
  82. McGarigal K, Marks BJ (1995) FRAGSTATS: Spatial pattern analysis program for quantifying landscape structure. US Forest Service General Technical Report PNW p 122Google Scholar
  83. McMahon K, van Dijk K-J, Ruiz-Montoya L, Kendrick G, Krauss SL, Waycott M, Verduin J, Lowe R, Statton J, Brown E, Duarte C (2014) The movement ecology of seagrasses. Proc R Soc B 281.  https://doi.org/10.1098/rspb.2014.0878
  84. McRea JE Jr, Greene HG, O’Connell VM, Wakefield WW (1999) Mapping marine habitats with high resolution sidescan sonar. Oceanol Acta 22:679–686CrossRefGoogle Scholar
  85. Mizerek T, Regan HM, Hovel KA (2011) Seagrass habitat loss and fragmentation influence management strategies for a blue crab Callinectes sapidus fishery. Mar Ecol Prog Ser 427:247–257CrossRefGoogle Scholar
  86. Murphey PL, Fonseca MS (1995) Role of high and low energy seagrass beds as nursery areas for Penaeus duorarum in North Carolina. Mar Ecol Prog Ser 121:91–98CrossRefGoogle Scholar
  87. Olesen B, Sand-Jensen K (1994) Patch dynamics of eelgrass Zostera marina. Mar Ecol Prog Ser 106:147CrossRefGoogle Scholar
  88. O’Neill RV, Riitters KH, Wickham JD, Jones KB (1999) Landscape pattern metrics and regional assessment. Ecosys Health 5:225–233CrossRefGoogle Scholar
  89. Ooi JLS, Van Niel KP, Kendrick GA, Holmes KW (2014) Spatial structure of seagrass suggests that size-dependent plant traits have a strong influence on the distribution and maintenance of tropical multispecies meadows. PLoS ONE 9:e86782.  https://doi.org/10.1371/journal.pone.0086782CrossRefPubMedPubMedCentralGoogle Scholar
  90. Orth RJ, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck KL, Hughes AR, Kendrick GA, Kenworthy WJ, Olyarnik S, Short FT, Waycott M, Williams SL (2006a) A global crisis for seagrass ecosystems. Bioscience 56:987–996CrossRefGoogle Scholar
  91. Orth RJ, Kendrick GA, Marion SR (2006b) Predation on Posidonia australis seeds in seagrass habitats of Rottnest Island, Western Australia: patterns and predators. Mar Ecol Prog Ser 313:105–114CrossRefGoogle Scholar
  92. Pastor J (2011) Mathematical ecology of populations and ecosystems. WileyGoogle Scholar
  93. Phinn SR, Roelfsema CM, Dekker AG, Brando V, Anstee J (2008) Mapping seagrass species, cover and biomass in shallow waters: an assessment of satellite multi-spectral and airborne hyper-spectral imaging systems in Moreton Bay (Australia). Remote Sens Environ 112:3413–3425CrossRefGoogle Scholar
  94. Pickett STA, White PS (1985) The ecology of natural disturbance and patch dynamics. Academic Press, New YorkGoogle Scholar
  95. Pittman SJ, McAlpine CA, Pittman KM (2004) Linking fish and prawns to their environment: a hierarchical landscape approach. Mar Ecol Prog Ser 283:233–254CrossRefGoogle Scholar
  96. Quammen ML, Onuf CP (1993) Laguna Madre: seagrass changes continue decades after salinity reduction. Estuaries 16:302–310CrossRefGoogle Scholar
  97. Rasheed MA (1999) Recovery of experimentally created gaps within a tropical Zostera capricorini (Aschers) seagrass meadow, Queensland Australia. J Exp Mar Biol Ecol 235:183–200CrossRefGoogle Scholar
  98. Reed RA, Johnson-Barnard J, Baker W (1996) Fragmentation of a forested rocky mountain landscape, 1950–1993. Biol Cons 75:267–277CrossRefGoogle Scholar
  99. Renton M, Airey M, Cambridge ML, Kendrick GA (2011) Modelling seagrass growth and development to evaluate transplanting strategies for restoration. Ann Botany 108:1213–1223CrossRefGoogle Scholar
  100. Riitters KH, O’Neill RV, Hunsaker CT, Wickham JD, Yankee DH, Timmins SP (1995) A factor analysis of landscape pattern and structure metrics. Landscape Ecol 10:23–39CrossRefGoogle Scholar
  101. Rivers DO, Kendrick GA, Walker DI (2011) Microsites play an important role for seedling survival in the seagrass Amphibolis antarctica. J Exp Mar Biol Ecol 401:29–35CrossRefGoogle Scholar
  102. Robbins BD, Bell SS (2000) Dynamics of a subtidal seagrass landscape: seasonal and annual change in relation to water depth. Ecology 81:1193–1205CrossRefGoogle Scholar
  103. Robins BD, Bell SS (1994) Seagrass landscapes: a terrestrial approach to the marine subtidal environment. Trends Ecol Evolut 9:301–304CrossRefGoogle Scholar
  104. Roelfsema C, Lyons M, Kovacs E, Maxwell P, Saunders M, Samper-Villarreal J, Phinn S (2014) Multi-temporal mapping of seagrass cover, species and biomass: a semiautomated object based image analysis approach. Remote Sens Environ 150:172–187CrossRefGoogle Scholar
  105. Rollon RN, De Ruyter Van Steveninck ED, Van Vierssen W, Fortes MD (1998) Contrasting recolonization strategies in multi-species seagrass meadows. Marine Poll Bull 37:450–459Google Scholar
  106. Salita JT, Ekau W, Saint-Paul U (2003) Field evidence on the influence of seagrass landscapes on fish abundance in Bolinao, northern Philippines. Mar Ecol Prog Ser 247:183–195CrossRefGoogle Scholar
  107. Santos RO, Lirman D, Pittman SJ (2015) Long-term spatial dynamics in vegetated seascapes: fragmentation and habitat loss in a human-impacted subtropical lagoon. Mar Ecol 36:1–15Google Scholar
  108. Saura S (2002) Effects of minimum mapping unit on land cover data spatial configuration and composition. Int J Remote Sens 23:4853–4880CrossRefGoogle Scholar
  109. Schumaker NH (1996) Using landscape indices to predict habitat connectivity. Ecology 77:1210–1225CrossRefGoogle Scholar
  110. Seddon S, Connolly RM, Edyvane KS (2000) Large-scale seagrass dieback in northern Spencer Gulf, South Australia. Aquat Bot 66:297–310CrossRefGoogle Scholar
  111. Short FT, Burdick DM (1996) Quantifying eelgrass habitat loss in relation to housing development and nitrogen loading in Waquoit Bay, Massachusetts. Estuaries 19:730–739CrossRefGoogle Scholar
  112. Sintes T, Marba N, Duarte CM, Kendrick G (2005) Non-linear processes in seagrass colonization explained by simple clonal growth rules. Oikos 108:165–175CrossRefGoogle Scholar
  113. Skilleter GA, Olds A, Loneragan NR, Zharikov Y (2005) The value of patches of intertidal seagrass to prawns depends on their proximity to mangroves. Mar Biol 147(2):353–365CrossRefGoogle Scholar
  114. Sleeman JC, Boggs GS, Radford BC, Kendrick GA (2005) Using agent-based models to aid reef restoration: enhancing coral cover and topographic complexity through the spatial arrangement of coral transplants. Restoration Ecol 13:685–694CrossRefGoogle Scholar
  115. Smith NM, Walker DI (2002) Canopy structure and pollination biology of the seagrasses Posidonia australis and P. sinuosa (Posidoneaceae). Aquat Bot 74:57–70CrossRefGoogle Scholar
  116. Smith TM, Hindell JS, Jenkins GP, Connolly RM, Keough MJ (2011) Edge effects in patchy seagrass landscapes: the role of predation in determining fish distribution. J Exp Mar Biol Ecol 399:8–16CrossRefGoogle Scholar
  117. Soberón J, Peterson AT (2005) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics 2:1–10Google Scholar
  118. Solan M, Germano JD, Rhoads DC, Smtih C, Michaud E, Patty D, Wenzhöfer F, Kennedy B, Henriques C, Battle E, Carey D, Iocco L, Valente R, Watson J, Rodenberg R (2003) Towards a greater understanding of pattern, scale, and process in marine benthic systems: a picture is worth a thousand worms. J Exp Mar Biol Ecol 285–286:313–338CrossRefGoogle Scholar
  119. Statton J, Gustin-Craig S, Dixon K, Kendrick GA (2015) Edge effects along a seagrass margin result in an increased grazing risk on Posidonia australis transplants. PLoS ONE 10:e0137778.  https://doi.org/10.1371/journal.pone.0137778CrossRefPubMedPubMedCentralGoogle Scholar
  120. Steele JH (1978) Spatial pattern in plankton communities. Plenum, New YorkCrossRefGoogle Scholar
  121. Suykerbuyk W, Bouma TJ, Govers LL, Giesen K, de Jong DJ, Herman P, van Katwijk MM (2016) Surviving in changing seascapes: sediment dynamics as bottleneck for long-term seagrass presence. Ecosystems 19(2):296–310CrossRefGoogle Scholar
  122. Tanner JE (2005) Edge effects on fauna in fragmented seagrass meadows. Austral Ecol 30:210–218CrossRefGoogle Scholar
  123. Tanner JE (2006) Landscape ecology of interactions between seagrass and mobile epifauna: the matrix matters. Estuar Coast Shelf Sci 68:404–412CrossRefGoogle Scholar
  124. Turner MG (1989) Landscape ecology: the effect of pattern on process. Annu Rev Ecol Syst 20:171–197CrossRefGoogle Scholar
  125. Turner SJ, Hewitt JE, Wilkinson MR, Morrisey DJ, Thrush SF, Cummings VJ, Funnell G (1999) Seagrass patches and landscapes: the influence of wind-wave dynamics and hierarchical arrangements of spatial structure on macrofaunal seagrass communities. Estuaries 22:1016–1032CrossRefGoogle Scholar
  126. van Teeffelen AJA, Ovaskainen O (2007) Can the cause of aggregation be inferred from species distributions? Oikos 116:4–16CrossRefGoogle Scholar
  127. Vidondo B, Duarte CM, Middelboe AL, Stefansen K, Luetzen T, Nielsen SL (1997) Dynamics of a landscape mosaic: Size and age distributions, growth and demography of seagrass Cymodocea nodosa patches. Mar Ecol Prog Ser 158:131–138CrossRefGoogle Scholar
  128. Villa F, Costanza R (2000) Design of multi-paradigm integrating modelling tools for ecological research. Environ Model Softw 15:169–177CrossRefGoogle Scholar
  129. Vonk JA, Christianen MJA, Stapel J (2010) Abundance, edge effect, and seasonality of fauna in mixed-species seagrass meadows in southwest Sulawesi, Indonesia. Marine Biology Research 6:282–291CrossRefGoogle Scholar
  130. Wagner HH, Fortin MJ (2005) Spatial analysis of landscapes: concepts and statistics. Ecology 86:1975–1987CrossRefGoogle Scholar
  131. Walker DI, Hillman KA, Kendrick GA, Lavery P (2001) Ecological significance of seagrasses: assessment for management of environmental impact in Western Australia. Ecol Eng 16:323–330CrossRefGoogle Scholar
  132. Waycott MW, Walker DI, James SH (1996) Genetic uniformity in Amphibolis antarctica, a dioecious seagrass. Heredity 76:578–585CrossRefGoogle Scholar
  133. Wedding LM, Lepczyk CA, Pittman SJ, Friedlander AM, Jorgensen S (2011) Quantifying seascape structure: extending terrestrial spatial pattern metrics to the marine realm. Mar Ecol Prog Ser 427:219–232CrossRefGoogle Scholar
  134. Williams SL (1990) Experimental studies of Caribbean seagrass bed development. Ecol Monograph 60:449–469CrossRefGoogle Scholar
  135. Wong S, Anand M, Bauch CT (2011) Agent-based modelling of clonal plant propagation across space: recapturing fairy rings, power laws and other phenomena. Ecological Informatics 6:127–135CrossRefGoogle Scholar
  136. Young PC, Kirkman H (1975) The seagrass communities of Moreton Bay, Queensland. Aquat Bot 1:191–202CrossRefGoogle Scholar
  137. Zhang X, Drake NA, and Wainwright J (2013) Spatial modelling and scaling issues. In: Environmental Modelling. Wiley, Ltd pp 69–90Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Gary A. Kendrick
    • 1
  • Renae K. Hovey
    • 1
  • Mitchell Lyons
    • 2
    • 3
  • Chris Roelfsema
    • 2
  • Leonardo Ruiz Montoya
    • 1
  • Stuart Phinn
    • 2
  1. 1.School of Biological Sciences and the Oceans InstituteThe University of Western AustraliaCrawleyAustralia
  2. 2.Remote Sensing Research Centre, Earth and Environmental SciencesUniversity of QueenslandBrisbaneAustralia
  3. 3.Centre for Ecosystem ScienceUniversity of New South WalesSydneyAustralia

Personalised recommendations