Advertisement

Decline and Restoration Ecology of Australian Seagrasses

  • John Statton
  • Kingsley W. Dixon
  • Andrew D. Irving
  • Emma L. Jackson
  • Gary A. Kendrick
  • Robert J. Orth
  • Elizabeth A. Sinclair
Chapter

Abstract

Since the first version of this book almost 30 years ago, significant losses of seagrass meadows have continued to be reported from around Australia as a result of natural and human induced perturbations. Conservative estimates indicate losses over the past two decades have more than doubled that estimated in the late 1990s. Conservation and mitigation of disturbance regimes have typically been the first line of defence, but ecological restoration or intervention is becoming increasingly necessary in a rapidly changing environment, and is potentially a more effective management strategy where seagrass habitat is already lost or heavily degraded. Accordingly, there has been an increase in the number of restoration studies and projects feeding our knowledge-base of restoration practice across Australia. Yet despite this increase, successful restoration has been rare, often uncoordinated, and almost always at a scale that is orders of magnitude lower than the scale of loss. Clearly, our understanding of the ecological mechanisms underlying successful and unsuccessful seagrass restoration is not keeping pace with the rates of loss and societal needs for restoration. Indeed, many orders of magnitude more restoration effort, in terms of science and practice and their interactions, will be required to prevent further seagrass loss. The science of seagrass restoration or restoration ecology is still a young science, but has strong foundations built from several decades of ecological research addressing many aspects of ecological interactions in seagrasses. While restoration has strong scientific underpinnings from ecological theory, it is clear that restoration ecology can also contribute to ecological theory by providing new and novel opportunities to advance our understanding of the mechanisms that promote functional ecosystems. In this chapter, we provide examples of this understanding across the levels of biological hierarchy, from genes to landscapes, and where possible include future strategic research directions.

Notes

Acknowledgements

This paper is contribution no. 3614 of the Virginia Institute of Marine Science, The College of William and Mary. Kendrick, Orth, Dixon Sinclair and Statton were partially funded by ARC LP130100155, LP130100918 and LP160101011. Jackson was funded by the Ian Potter Foundation, Norman Wettenhall Foundation and Fitzroy Basin Association. Figure 20.3 utilised the IAN/UMCES SAV Symbol Library courtesy of the Integration and Application Network, University of Maryland Center for Environmental Science (ian.umces.edu/symbols/).

References

  1. Abelson A, Halpern BS, Reed DC, Orth RJ, Kendrick GA, Beck MW, Belmaker J, Krause G, Edgar GJ, Airoldi L, Brokovich E, France R, Shashar N, de Blaeij A, Stambler N, Salameh P, Shechter M, Nelson PA (2016) Upgrading marine ecosystem restoration using ecological-social concepts. BioScience 66:156–163PubMedCrossRefPubMedCentralGoogle Scholar
  2. Ajemian MJ, Wetz JJ, Shipley-Lozano B, Shively JD, Stunz GW (2015) An analysis of artificial reef fish community structure along the northwestern Gulf of Mexico shelf: potential impacts of ‘Rigs-to-Reefs’ programs. PLoS ONE 10:e0126354CrossRefGoogle Scholar
  3. Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetics. Nat Rev Genet 11:697–709PubMedCrossRefPubMedCentralGoogle Scholar
  4. Anon. (1979) Cockburn sound environmental study 1976–1979. Report No. 9., Department of Conservation and Environment, Perth, Western AustraliaGoogle Scholar
  5. Arias-Ortiz A, Serrano O, Masqué P, Lavery PS, Mueller U, Kendrick GA, Rozaimi M, Esteban A, Fourqurean JW, Marbà N, Mateo MA, Murray K, Rule M, Duarte CM (2018) A marine heat wave drives massive losses from the world’s largest seagrass carbon stocks. Nature ClimateGoogle Scholar
  6. Balestri E, Lardicci C (2008) First evidence of a massive recruitment event in Posidonia oceanica: Spatial variation in first-year seedling abundance on a heterogeneous substrate. Est Coast Shelf Sci 76:634–641CrossRefGoogle Scholar
  7. Ball D, Soto-Berelov M, Young P (2014) Historical seagrass mapping in Port Phillip Bay, Australia. J Coast Cons 18:257–272CrossRefGoogle Scholar
  8. Bastyan GR (1986) Distribution of seagrass in Princess Royal Harbour and Oyster Harbour on the south coast of Western Australia. Technical series 1. Western Australian Department of Conservation and Environment, Perth, Western AustraliaGoogle Scholar
  9. Bastyan GR, Cambridge ML (2008) Transplantation as a method for restoring the seagrass Posidonia australis. Est Coast Shelf Sci 79:289–299CrossRefGoogle Scholar
  10. Bell SS (2006) Seagrasses and the metapopulation concept: developing a regional approach to the study of extinction, colonization, and dispersal. In: Kritzer JP, Sale PF (eds) Marine Metapopulations. Academic Press, LondonGoogle Scholar
  11. Bell SS, Fonseca MS, Motten LB (1997) Linking restoration and landscape ecology. Restor Ecol 5:318–323CrossRefGoogle Scholar
  12. Bell SS, Robbins BD, Jensen SL (1999) Gap dynamics in a seagrass landscape. Ecosystems 2:493–504CrossRefGoogle Scholar
  13. Biome—ESP (2007) Seagrass management plan. A report prepared for Gold Coast City Council by Biome—ESP BIOME-ESP, Waters, QueenslandGoogle Scholar
  14. Blackburn NJ, Orth RJ (2013) Seed burial in Zostera marina (eelgrass): the role of infauna. Mar Ecol Prog Ser 474:135–145CrossRefGoogle Scholar
  15. Blandon A, zu Ermgassen PSE (2014) Quantitative estimate of commercial fish enhancement by seagrass habitat in southern Australia. Est Coast Shelf Sci 141:1–8Google Scholar
  16. Borum J, Pedersen O, Kotula L, Fraser MW, Statton J, Colmer TD, Kendrick GA (2016) Photosynthetic response to globally increasing CO2 of co-occurring temperate seagrass species. Plant Cell Environ 39:1240–1250PubMedCrossRefPubMedCentralGoogle Scholar
  17. Bozzano M, Jalonen R, Thomas E, Boshier D, Gallo L, Cavers S, Bordács S, Smith P, Loo J (2014) (eds) Genetic considerations in ecosystem restoration using native tree species. State of the World’s Forest Genetic Resources – Thematic Study. FAO and Bioversity International, RomeGoogle Scholar
  18. Breed MF, Stead MG, Ottewell KM, Gardner MG, Lowe AJ (2013) Which provenance and where? Seed sourcing strategies for revegetation in a changing environment. Cons Genet 14:1–10CrossRefGoogle Scholar
  19. Bridgwood S (2006) Seagrass landscapes along a wave gradient. Ph.D. thesis, Murdoch University, Western AustraliaGoogle Scholar
  20. Broadhurst LM, Lowe AJ, Coates DJ, Cunningham SA, McDonald M, Vesk PA, Yates CJ (2008) Seed supply for broadscale restoration: maximizing evolutionary potential. Evol App 1:587–597Google Scholar
  21. Bryars S, Neverauskas VP (2004) Natural recolonisation of seagrasses at a disused sewage sludge outfall. Aquat Bot 80:283–289CrossRefGoogle Scholar
  22. Bryars S, Collings G, Miller D (2011) Nutrient exposure causes epiphytic changes and coincident declines in two temperate Australian seagrasses. Mar Ecol Prog Ser 441:89–103CrossRefGoogle Scholar
  23. Bulthuis DA (1983) Effects of in situ light reduction on density and growth of the seagrass Heterozostera tasmanica (Martens ex Aschers.) den Hartog in Western Port, Victoria, Australia. J Exp Mar Biol Ecol 67:91–103CrossRefGoogle Scholar
  24. Burnell OW, Russell BD, Irving AD, Connell SD (2013) Eutrophication offsets increased sea urchin grazing on seagrass caused by ocean warming and acidification. Mar Ecol Prog Ser 485:37–46CrossRefGoogle Scholar
  25. Burnell OW, Connell SD, Irving AD, Watling JR, Russell BD (2014) Contemporary reliance on bicarbonate acquisition predicts increased growth of seagrass Amphibolis antarctica in a high-CO2 world. Cons Physiol 2:cou052Google Scholar
  26. Cambridge ML, Kendrick GA (2009) Contrasting responses of seagrass transplants (Posidonia australis) to nitrogen, phosphorus and iron addition in an estuary and a coastal embayment. J Exp Mar Biol Ecol 371:34–41CrossRefGoogle Scholar
  27. Cambridge ML, McComb AJ (1984) The loss of seagrasses in Cockburn Sound Western Australia 1. The time course and magnitude of seagrass decline in relation to industrial development. Aquat Bot 20:229–244CrossRefGoogle Scholar
  28. Campbell SJ, McKenzie LJ (2004) Flood related loss and recovery of intertidal seagrass meadows in southern Queensland, Australia. Est Coast Shelf Sci 60:477–490CrossRefGoogle Scholar
  29. Clarke SM, Kirkman H (1989) Seagrass dynamic. In: Larkum AWD, McComb AJ, Shepherd SA (eds) Biology of seagrasses: a treatise on the biology of seagrasses with special reference to the Australian region. Elsevier, Amsterdam, pp 304–345Google Scholar
  30. Cole RA (2012) Effects of anthropogenic disturbance on sediment composition, infaunal assemblages and coverage of a Zostera marina bed. Marine Institute. Plymouth University, PlymouthGoogle Scholar
  31. Coles RG, Rasheed MA, McKenzie LJ, Grech A, York PH, Sheaves M, McKenna S, Bryant C (2015) The great barrier reef world heritage area seagrasses: managing this iconic australian ecosystem resource for the future. Est Coast Shelf Sci 153:A1–A12CrossRefGoogle Scholar
  32. Collier C, Waycott M, McKenzie L (2012) Light thresholds derived from seagrass loss in the coastal zone of the northern Great Barrier Reef, Australia. Ecol Indicat 23:211–219CrossRefGoogle Scholar
  33. Connell JH, Slatyer RO (1977) Mechanisms of succession in natural communities and their role in community stability and organization. Am Nat 111:1119–1144CrossRefGoogle Scholar
  34. Dekker AG, Brando VE, Anstee JM (2005) Retrospective seagrass change detection in a shallow coastal tidal Australian lake. Remote Sens Environ 97:415–433CrossRefGoogle Scholar
  35. Delefosse M, Kristensen E (2012) Burial of Zostera marina seeds in sediment inhabited by three polychaetes: laboratory and field studies. J Sea Res 71:41–49CrossRefGoogle Scholar
  36. Doney SC, Ruckelshaus MH, Duffy JE, Barry JP, Chan F, English CA, Galindo HM, Grebmeier JM, Hollowed AB, Knowlton N, Polovina J, Rabalais NN, Sydeman WJ, Talley LD (2012) Climate change impacts on marine ecosystems. Ann Rev Mar Sci 4:1–27CrossRefGoogle Scholar
  37. Duarte CM (2002) The future of seagrass meadows. Environ Cons 29:192–206CrossRefGoogle Scholar
  38. Duffy JE (2006) Biodiversity and the functioning of seagrass ecosystems. Mar Ecol Prog Ser 311:233–250CrossRefGoogle Scholar
  39. Elliott M (2011) Marine science and management means tackling exogenic unmanaged pressures and endogenic managed pressures—a numbered guide. Mar Pollut Bull 62:651–655PubMedCrossRefPubMedCentralGoogle Scholar
  40. EPA (1998) Changes in seagrass coverage and links to water quality off the Adelaide metropolitan coastline. Environment Protection Authority, AdelaideGoogle Scholar
  41. Evans SM, Sinclair EA, Poore AGB, Steinberg PD, Kendrick GA, Vergés A (2014) Genetic diversity in threatened Posidonia australis seagrass meadows. Cons Genet 15:717–728CrossRefGoogle Scholar
  42. Fodrie FJ, Heck KL Jr, Powers SP, Graham WM, Robinson KL (2010) Climate-related, decadal-scale assemblage changes of seagrass-associated fishes in the northern Gulf of Mexico. Glob Change Biol 16:48–59CrossRefGoogle Scholar
  43. Folmer EO, van der Geest M, Jansen E, Olff H, Anderson TM, Piersma T, van Gils JA (2012) Seagrass-sediment feedback: an exploration using a non-recursive structural equation model. Ecosystems 15:1380–1393CrossRefGoogle Scholar
  44. Fonseca MS, Bell SS (1998) Influence of physical setting on seagrass landscapes near Beaufort, North Carolina, USA. Mar Ecol Prog Ser 171:109–121CrossRefGoogle Scholar
  45. Fourqurean JW, Powell GVN, Kenworthy WJ, Zieman JC (1995) The effects of long-term manipulation of nutrient supply on competition between the seagrasses Thalassia testudinum and Halodule wrightii in Florida Bay. Oikos 72:349–358CrossRefGoogle Scholar
  46. Frankham R, Ballou JD, Eldridge MDB, Lacy RC, Ralls K, Dudash MR, Fenster CB (2011) Predicting the probability of outbreeding depression. Cons Biol 25:465–475CrossRefGoogle Scholar
  47. Franssen SU, Gu J, Winters G, Huylmans A-K, Wienpahl I, Sparwel M, Coyer JA, Olsen JL, Reusch TBH, Bornberg-Bauer E (2014) Genome-wide transcriptomic responses of the seagrasses Zostera marina and Nanozostera noltii under a simulated heatwave confirm functional types. Mar Genom 15:65–73CrossRefGoogle Scholar
  48. Fraser MW, Kendrick GA, Statton J, Hovey RK, Zavala-Perez A, Walker DI (2014) Extreme climate events lower resilience of foundation seagrass at edge of biogeographical range. J Ecol 102:1528–1536CrossRefGoogle Scholar
  49. Gillies CL, Fitzsimons JA, Branigan S, Hale L, Hancock B, Creighton C, Alleway H, Bishop MJ, Brown S, Chamberlain D, Cleveland B, Crawford C, Crawford M, Diggles B, Ford JR, Hamer P, Hart A, Johnston E, McDonald T, McLeod I, Pinner B, Russell K, Winstanley R (2015) Scaling-up marine restoration efforts in Australia. Ecol Manage Restor 16:84–85CrossRefGoogle Scholar
  50. Golicz AA, Schliep M, Lee HT, Larkum AWD, Dolferus R, Batley J, Chan C-KK, Sablok G, Ralph PJ, Edwards D (2015) Genome-wide survey of the seagrass Zostera muelleri suggests modification of the ethylene signalling network. J Exp Bot 66:1489–1498PubMedPubMedCentralCrossRefGoogle Scholar
  51. Grech A, Coles R, Marsh H (2011) A broad-scale assessment of the risk to coastal seagrasses from cumulative threats. Mar Pol 35:560–567CrossRefGoogle Scholar
  52. Hall J (2011) Southport Broadwater Parklands—stage 1 and 2 close out report. Gold Coast City Council, SouthportGoogle Scholar
  53. Hamdorf I, Kirkman H (1995) Status of Australian seagrass: issues paper, March 1995. Fisheries Pollution and Marine Environment Committee, Canberra, A.C.TGoogle Scholar
  54. Hansen MM, Olivieri I, Waller DM, Nielsen EE (2012) Monitoring adaptive genetic responses to environmental change. Mol Ecol 21:1311–1329PubMedCrossRefPubMedCentralGoogle Scholar
  55. Harbison P, Wiltshire D (1993) northern spencer gulf resource processing strategy. Working Paper No. 2. Department of the Premier and Cabinet, AdelaideGoogle Scholar
  56. Harwell MC, Rhode JM (2007) Effects of edge/interior and patch structure on reproduction in Zostera marina L. in Chesapeake Bay, USA. Aquat Bot 87:147–154CrossRefGoogle Scholar
  57. Hastings K, Hesp P, Kendrick GA (1995) Seagrass loss associated with boat moorings at Rottnest Island, Western Australia. Ocean Coast Manag 26:225–246CrossRefGoogle Scholar
  58. Heck KL Jr, Carruthers TJ, Duarte CM, Hughes AR, Kendrick G, Orth RJ, Williams SW (2008) Trophic transfers from seagrass meadows subsidize diverse marine and terrestrial consumers. Ecosystems 11:1198–1210CrossRefGoogle Scholar
  59. Hegge B, Kendrick G (2005) Assessing change in seagrass distribution in Esperance Bay. In: Wells FE, Walker DI, Kendrick GA (eds) The marine flora and fauna of Esperance. Western Australian Museum, Perth, Western AustraliaGoogle Scholar
  60. Hemminga MA, Duarte CM (2000) Seagrass ecology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  61. Hernawan UE, van Dijk K-J, Kendrick GA, Feng M, Biffen E, Lavery PS, McMahon K (2017) Historical processes and contemporary ocean currents drive genetic structure in the seagrass Thalassia hemprichii in the Indo-Australian Archipelago. Mol Ecol 26:1008–1021.  https://doi.org/10.1111/mec.13966CrossRefGoogle Scholar
  62. Hocking PJ, Cambridge ML, McComb AJ (1981) The nitrogen and phosphorus nutrition of developing plants of two seagrasses, Posidonia australis and Posidonia sinuosa. Aquat Bot 11:245–261Google Scholar
  63. Hovey R, Cambridge ML, Kendrick GA (2011) Direct measurements of root growth and productivity I the seagrasses Posdionia australis and P. sinuosa. Limn Oceanog 56:394–402CrossRefGoogle Scholar
  64. Hughes AR, Stachowicz JJ (2004) Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. Proc Natl Acad Sci USA 101:8998–9002PubMedCrossRefPubMedCentralGoogle Scholar
  65. Hughes AR, Inouye BD, Johnson MT, Underwood N, Vellend M (2008) Ecological consequences of genetic diversity. Ecol Lett 11:609–623PubMedCrossRefPubMedCentralGoogle Scholar
  66. Hufford KM, Mazer SJ (2003) Plant ecotypes: genetic differentiation in the age of ecological restoration. Trends Ecol Evol 18(3):147–155Google Scholar
  67. Hyndes GA, Lavery PS (2005) Does transported seagrass provide an important trophic link in unvegetated, nearshore areas? Estuar Coast Shelf Sci 63:633–643CrossRefGoogle Scholar
  68. Hyndes GA, Heck KL Jr, Vergés A, Harvey ES, Kendrick GA, Lavery PS, McMahon K, Orth RJ, Pearce A, Vanderklift M (2016) Accelerating tropicalization and the transformation of temperate seagrass meadows. BioScience 66:938–948PubMedPubMedCentralCrossRefGoogle Scholar
  69. Inglis GJ (2000) Disturbance-related heterogeneity in the seed banks of a marine angiosperm. J Ecol 88:88–99CrossRefGoogle Scholar
  70. Irving AD (2013) A century of failure for habitat recovery. Ecography 36:414–416CrossRefGoogle Scholar
  71. Irving AD (2014) Seagrasses of Spencer Gulf. In: Shepherd SA, Madigan S, Gillanders BM, Murray Jones S, Wiltshire D (eds) Natural history of Spencer Gulf. Royal Society of South Australia, AdelaideGoogle Scholar
  72. Irving AD, Tanner JE, Seddon S, Miller D, Collings GJ, Wear RJ, Hoare SL, Theil MJ (2010) Testing alternate ecological approaches to seagrass rehabilitation: links to life-history traits. J App Ecol 47:1119–1127CrossRefGoogle Scholar
  73. Irving AD, Tanner JE, Collings GJ (2014) Rehabilitating seagrass by facilitating recruitment: improving chances for success. Restor Ecol 22:134–141CrossRefGoogle Scholar
  74. Jahnke M, Serra IA, Bernard G, Procaccini G (2015) The importance of genetic make-up in seagrass restoration: a case study of the seagrass Zostera noltei. Mar Ecol Prog Ser 532:111–122CrossRefGoogle Scholar
  75. James JJ, Svejcar TJ, Rinella MJ (2011) Demographic processes limiting seedling recruitment in arid grassland restoration. J of Appl Ecol 48(4):961–969Google Scholar
  76. Jensen S, Bell S (2001) Seagrass growth and patch dynamics: cross-scale morphological plasticity. Plant Ecol 155:201–217CrossRefGoogle Scholar
  77. Jones TA (2013) When local isn’t best. Evol App 6:1109–1118Google Scholar
  78. Jump AS, Penuelas J (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecol Lett 8:1010–1020CrossRefGoogle Scholar
  79. Kaldy JE, Dunton KH (1999) Ontogenetic photosynthetic changes, dispersal and survival of Thalassia testudinum (turtle grass) seedlings in a sub-tropical lagoon. J of Exp Mar Biol and Ecol 240(2):193–212Google Scholar
  80. Kendrick GA, Aylward MJ, Hegge BJ, Cambridge ML, Hillman K, Wyllie A, Lord DA (2002) Changes in seagrass coverage in Cockburn Sound, Western Australia between 1867 and 1999. Aquat Bot 73:75–87CrossRefGoogle Scholar
  81. Kendrick GA, Holmes KW, Van Niel KP (2008) Multi-scale spatial patterns of three seagrass species with different growth dynamics. Ecography 31:191–200CrossRefGoogle Scholar
  82. Kendrick GA, Fourqurean JW, Fraser MW, Heithaus MR, Jackson G, Friedman K, Hallac D (2012a) Science behind management of Shark Bay and Florida Bay, two P-limited subtropical systems with different climatology and human pressures. Mar Freshw Res 63:941–951CrossRefGoogle Scholar
  83. Kendrick GA, Waycott M, Carruthers TJ, Cambridge ML, Hovey R, Krauss SL, Lavery PS, Les DH, Lowe RJ, Mascaró O, Ooi Lean Sim J, Orth RJ, Rivers D, Ruiz-Montoya L, Sinclair EA, Statton J, van Dijk K, Verduin J (2012b) The central role of dispersal in the maintenance and persistence of seagrass populations. BioScience 62:56–65CrossRefGoogle Scholar
  84. Kendrick GA, Orth RJ, Statton J, Hovey R, Ruiz Montoya L, Lowe RJ, Krauss SL, Sinclair EA (2017) Demographic and genetic connectivity: the role and consequences of reproduction, dispersal and recruitment in seagrasses. Biol Rev 92:921–938.  https://doi.org/10.1111/brv.12261CrossRefPubMedPubMedCentralGoogle Scholar
  85. Kettenring KM, Mercer KL, Reinhardt Adams C, Hines J (2014) Application of genetic diversity–ecosystem function research to ecological restoration. J App Ecol 51:339–348CrossRefGoogle Scholar
  86. Kilminster K, McMahon K, Waycott M, Kendrick GA, Scanes P, McKenzie L, O’Brien KR, Lyons M, Ferguson A, Maxwell P (2015) Unravelling complexity in seagrass systems for management: Australia as a microcosm. Sci Total Environ 534:97–109PubMedCrossRefPubMedCentralGoogle Scholar
  87. King R, Hodgson B (1986) Aquatic angiosperms in coastal saline lagoons of New South Wales. IV. Long-term changes. In: Proceedings of the Linnean Society of New South WalesGoogle Scholar
  88. Kirkman H (1978) Decline of seagrass in northern areas of Moreton Bay, Queensland. Aquat Bot 5:63–76CrossRefGoogle Scholar
  89. Kirkman H (1997) Seagrasses of Australia. State of the environment technical paper series (Estuaries and the Sea). Department of the Environment, CanberraGoogle Scholar
  90. Kirkman H, Kuo J (1996)Google Scholar
  91. Koch M, Bowes G, Ross C, Zhang XH (2013) Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob Change Biol 19:103–132CrossRefGoogle Scholar
  92. Kritzer JP, Sale PF (2004) Metapopulation ecology in the sea: from Levins’ model to marine ecology and fisheries science. Fish Fish 5:131–140CrossRefGoogle Scholar
  93. Lamb JB, van der Water JAJM, Bourne DG, Altier C, Hein MY, Fiorenza EA, Abu N, Jompa J, Harvell CD (2017) Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates. Science 355:731–733Google Scholar
  94. Larkum AWD, West RJ (1990) Long-term changes in of seagrass meadows in Botany Bay, Australia. Aquat Bot 37:55–70CrossRefGoogle Scholar
  95. Larkum AWD, Comb AJM, Shepherd SA (1989) Biology of seagrasses: a treatise on the biology of seagrasses with special reference to the Australian region. Elsevier Science LimitedGoogle Scholar
  96. Larkum AWD, Orth RJ, Duarte CM (2006) Seagrasses: biology, ecology and conservation. Springer, NetherlandsGoogle Scholar
  97. Lauritano C, Ruocco M, Dattolo E, Buia MC, Silva J, Santos R, Olivé I, Costa MM, Procaccini G (2015) Response of key stress-related genes of the seagrass Posidonia oceanica in the vicinity of submarine volcanic vents. Biogeosciences 12:4185–4194CrossRefGoogle Scholar
  98. Lee HT, Golicz AA, Baper PE, Jiao Y, Tang H, Paterson AH, Sablok G, Krishnaraj RR, Chang C-KK, Batley J, Kendrick GA, Larkum AWD, Ralph PJ, Edwards D (2016) The genome of a southern hemisphere seagrass species (Zostera muelleri). Plant Physiol 172:272–283CrossRefPubMedPubMedCentralGoogle Scholar
  99. Marbà N, Duarte CM (1995) Coupling of seagrass (Cymodocea nodosa) patch dynamics to subaqueous dune migration. J Ecol 83:381–389CrossRefGoogle Scholar
  100. Marbà N, Duarte CM, Cebrián J, Gallegos ME, Olesen B, Sand-Jensen K (1996) Growth and population dynamics of Posidonia oceanica on the Spanish Mediterranean coast: elucidating seagrass decline. Mar Ecol Prog Ser 203–221Google Scholar
  101. Marbà N, Arias-Ortiz A, Masqué P, Kendrick GA, Mazarrasa I, Bastyan GR, Garcia-Orellana J, Duarte CM (2015) Impact of seagrass loss and subsequent revegetation on carbon sequestration and stocks. J Ecol 103:296–302CrossRefGoogle Scholar
  102. Marion SR, Orth RJ (2010a) Innovative techniques for large-scale seagrass restoration using Zostera marina (eelgrass) seeds. Restor Ecol 18:514–526CrossRefGoogle Scholar
  103. Marion SR, Orth RJ (2010b) Factors influencing seedling establishment rates in eelgrass (Zostera marina) and their implications for seagrass restoration. Restor Ecol 18:549–559CrossRefGoogle Scholar
  104. Marion SR, Orth RJ (2012) Seedling establishment in eelgrass: seed burial effects on winter losses of developing seedlings. Mar Ecol Prog Ser 448:197–207CrossRefGoogle Scholar
  105. McDonald T, Gann GD, Jonson J, Dixon KW (2016) International standards for the practice of ecological restoration–including principles and key concepts. Society for Ecological Restoration, Washington, DC. Front cover photo credits: © Marcel Huijser, Errol Douwes, © Marcel Huijser Back cover photo credits: © Marcel Huijser. Soil-Tec, Inc., © Marcel Huijser, Bethanie WalderGoogle Scholar
  106. McKenna S, Jarvis J, Sankey T, Reason C, Coles R, Rasheed M (2015) Declines of seagrasses in a tropical harbour, North Queensland, Australia, are not the result of a single event. J Biosci (Bangalore) 40:389–398CrossRefGoogle Scholar
  107. McMahon K, Ruiz‐Montoya L, Kendrick GA, Krauss SL, Waycott M, Verduin J, Lowe R, Statton J, Brown E, Duarte C (2014) The movement ecology of seagrasses. Proc Royal Soc B Biol Sci 281:20140878Google Scholar
  108. McSkimming C, Connell SD, Russell BW, Tanner JE (2016) Habitat restoration: early signs and extent of faunal recovery relative to seagrass recovery. Estuar Coast Shelf Sci 171:51–57CrossRefGoogle Scholar
  109. Meehan AJ (1997) Historical changes in seagrass, mangrove and saltmarsh communities in Merimbula Lake and Pambula Lake. Unpublished honours research report. Environmental Science Program, Faculty of Science, The University of WollongongGoogle Scholar
  110. Meehan AJ, West RJ (2000) Recovery times for a damaged Posidonia australis bed in south eastern Australia. Aquat Bot 67:161–167CrossRefGoogle Scholar
  111. Meehan AJ, West RJ (2002) Experimental transplanting of Posidonia australis seagrass in Port Hacking, Australia, to assess the feasibility of restoration. Mar Pollut Bull 44:25–31PubMedCrossRefPubMedCentralGoogle Scholar
  112. Menges ES (2000) Population viability analyses in plants: challenges and opportunities. Trends Ecol Evol 15:51–56PubMedCrossRefPubMedCentralGoogle Scholar
  113. Merila J (2012) Evolution in response to climate change: in pursuit of the missing evidence. BioEssays 34:811–818PubMedCrossRefPubMedCentralGoogle Scholar
  114. Miller BP, Sinclair EA, Menz MHM, Elliott CP, Bunn E, Commander LE, Dalziell E, David E, Erickson TE, Golos PJ, Krauss SL, Lewandrowski W, Mayence CE, Merino-Martin L, Merritt DJ, Nevill P, Davis B, Phillips R, Ritchie AL, Ruoss S, Stevens J (2017) A comprehensive framework of the science necessary to restore sustainable and biodiverse ecosystems resilient to global change. Restor Ecol 25:605–617CrossRefGoogle Scholar
  115. Moberg F, Rönnbäck P (2003) Ecosystem services of the tropical seascape: interactions, substitutions and restoration. Ocean Coast Manag 46(1):27–46CrossRefGoogle Scholar
  116. Morris L, Jenkins G, Hatton D, Smith T (2007) Effects of nutrient additions on intertidal seagrass (Zostera muelleri) habitat in Western Port, Victoria, Australia. Mar Freshwtr Res 58:666–674CrossRefGoogle Scholar
  117. Mumby PJ (2006) Connectivity of reef fish between mangroves and coral reefs: algorithms for the design of marine reserves at seascape scales. Biol Cons 128(2):215–222CrossRefGoogle Scholar
  118. Nagelkerken I, Van der Velde G, Gorissen MW, Meijer GJ, Van’t Hof T, Den Hartog C (2000) Importance of mangroves, seagrass beds and the shallow coral reef as a nursery for important coral reef fishes, using a visual census technique. Estuar Coast Shelf Sci 51(1):31–44CrossRefGoogle Scholar
  119. Neverauskas V (1987) Monitoring seagrass beds around a sewage sludge outfall in South Australia. Mar Pollut Bull 18:158–164CrossRefGoogle Scholar
  120. Nyström M, Norström AV, Blenckner T, de la Torre-Castro M, Eklöf JS, Folke C, Troell M (2012) Confronting feedbacks of degraded marine ecosystems. Ecosystems 15(5): 695–710Google Scholar
  121. Oldham CE, Lavery PS, McMahon K, Pattiaratchi C, Chiffings TW (2010) Seagrass wrack dynamics in Geographe Bay, Western Australia. Report prepared for the Department of Transport, Western Australia and Shire of BusseltonGoogle Scholar
  122. Olsen JL, Rouzé P, Verhelst B, Lin YC, Bayer T, Collen J, Dattolo E, De Paoli E, Dittami S, Maumus F, Michel G (2016) The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature 530:331–335PubMedCrossRefPubMedCentralGoogle Scholar
  123. Ooi JLS, Van Niel KP, Kendrick GA, Holmes K (2014) Spatial structure of seagrass suggests that size-dependent plant traits have a strong influence on the distribution and maintenance of tropical multispecies meadows. PlosONE 9:e86782CrossRefGoogle Scholar
  124. Orth RJ (1977) Effects of nutrient enrichment on the growth of eelgrass, Zostera marina, in the Chesapeake Bay, Virginia. Mar Biol 44:187–l94Google Scholar
  125. Orth RJ, Moore KA (1982) The effect of fertilizers on transplanted eelgrass, Zostera marina L. in the Chesapeake Bay. In: Webb FJ (ed) Proceedings of ninth annual conference on wetlands restoration and creation. Hillsborough Community College, Tampa, Florida, pp 104–131Google Scholar
  126. Orth RJ, van Montfrans J (1984) The role of micrograzing on seagrass periphyton: a review. Aquat Bot 18:43–69CrossRefGoogle Scholar
  127. Orth RJ, Luckenbach M, Moore KA (1994) Seed dispersal in a marine macrophyte: implications for colonization and restoration. Ecology 1927–1939Google Scholar
  128. Orth RJ, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck KL Jr, Hughes AR, Kendrick GA, Kenworthy WJ, Olyarnik S, Short FT, Waycott M, Williams SL (2006) A global crisis for seagrass ecosystems. BioScience 56:987–996CrossRefGoogle Scholar
  129. Orth RJ, Moore KA, Marion SR, Wilcox DJ, Parrish DB (2012) Seed addition facilitates eelgrass recovery in a coastal bay system. Mar Ecol Prog Ser 448:177–195CrossRefGoogle Scholar
  130. Paling EI, Van Keulen M, Wheeler KD, Phillips J, Dyhrberg R (2003) Influence of spacing on mechanically transplanted seagrass survival in a high wave energy regime. Restor Ecol 11(1):56–61Google Scholar
  131. Perring MP, Standish RJ, Price JN, Craig MD, Erickson TE, Ruthrof KX, Whiteley AS, Valentine LE, Hobbs RJ (2015) Advances in restoration ecology: rising to the challenges of the coming decades. Ecosphere 6:1–25CrossRefGoogle Scholar
  132. Peterson BJ, Heck KL Jr (2001) Positive interactions between suspension-feeding bivalves and seagrass—a facultative mutualism. Mar Ecol Prog Ser 213:143–155CrossRefGoogle Scholar
  133. Piazzi L, Balestri E, Magri M, Cinelli F (1998) Experimental transplanting of Posidonia oceanica (L.) Delile into a disturbed habitat in the Mediterranean Sea. Bot Mar 41:593–602Google Scholar
  134. Poiner IR, Staples DJ, Kenyon RA (1987) Seagrass communities of the Gulf of Carpentaria, Australia. Mar Freshw Res 38:121–131CrossRefGoogle Scholar
  135. Prado P, Heck KL Jr (2011) Seagrass selection by omnivorous and herbivorous consumers: determining factors. Mar Ecol Prog Ser 429:45–55CrossRefGoogle Scholar
  136. Preen A, Long WL, Coles R (1995) Flood and cyclone related loss, and partial recovery, of more than 1000 km2 of seagrass in Hervey Bay, Queensland, Australia. Aquat Bot 52:3–17CrossRefGoogle Scholar
  137. Prober SM, Byrne M, Mclean EH, Steane DA, Potts BM, Vaillancourt RE, Stock WD (2015) Climate-adjusted provenancing: a strategy for climate-resilient ecological restoration. Front Ecol Evol 3:65CrossRefGoogle Scholar
  138. Ralph PJ, Durako MJ, Enríquez S, Collier CJ, Doblin MA (2007) Impact of light limitation on seagrasses. J Exp Mar Biol Ecol 350:176–193CrossRefGoogle Scholar
  139. Rasheed MA, McKenna SA, Carter AB, Coles RG (2014) Contrasting recovery of shallow and deep water seagrass communities following climate associated losses in tropical north Queensland, Australia. Mar Pollut Bull 83:491–499PubMedCrossRefGoogle Scholar
  140. Reynolds LK, McGlathery KJ, Waycott M (2012) Genetic diversity enhances restoration success by augmenting ecosystem services. PLoS ONE 7(6):e38397Google Scholar
  141. Reynolds LK, Waycott M, McGlathery KJ (2013) Restoration recovers population structure and landscape genetic connectivity in a dispersal-limited ecosystem. J Ecol 101:1288–1297CrossRefGoogle Scholar
  142. Rivers DO, Kendrick GA, Walker DI (2011) Microsites play an important role for seedling survival in the seagrass Amphibolis antarctica. J Exp Mar Biol Ecol 401:29–35CrossRefGoogle Scholar
  143. Ruiz-Montoya L, Lowe R, Van Niel K, Kendrick G (2012) The role of hydrodynamics on seed dispersal in seagrasses. Limnol Oceanogr 57:1257–1265CrossRefGoogle Scholar
  144. Saunders MI, Bayraktarov E, Roelfsema CM, Leon JX, Samper-Villarreal J, Phinn SR, Lovelock CE, Mumby PJ (2015) Spatial and temporal variability of seagrass at Lizard Island, Great Barrier Reef. Bot Mar 58:35–49CrossRefGoogle Scholar
  145. Seddon S, Connolly RM, Edyvane KS (2000) Large‐scale seagrass dieback in northern Spencer Gulf, South Australia. Aquat Bot 66:297–310Google Scholar
  146. Sergeev V, Clarke S, Shepherd S (1988) Motile macroepifauna of the seagrasses, Amphibolis and Posidonia, and unvegetated sandy substrata in Holdfast Bay, South Australia. Trans R Soc South Aust 112:97–108Google Scholar
  147. Serrano O, Lavery PS, Masque P, Inostroza K, Bongiovanni J, Duarte CM (2016) Seagrass sediments reveal the long-term deterioration of an estuarine ecosystem. Global Change BiolGoogle Scholar
  148. Shephard S, McComb A, Bulthuis D, Neverauskas V, Steffensen D, West R (1989) Decline of seagrasses. In: Larkum AWD, McComb AJ, Shepherd SA (eds) Biology of seagrasses. Elsevier, AmsterdamGoogle Scholar
  149. Shepherd S (1986) Coastal waters. In: Nance C, Speight DL (eds) A land transformed: environmental change in South Australia Longman Cheshire, Adelaide. Longman, MelbourneGoogle Scholar
  150. Short FT, Wyllie-Echeverria S (1996) Natural and human-induced disturbance of seagrasses. Environ Conserv 23:17–27CrossRefGoogle Scholar
  151. Silliman BR, Schrack E, He Q, Cope R, Santoni A, van der Heide T, Jacobi R, Jacobi M, van de Koppel J (2015) Facilitation shifts paradigms and can amplify coastal restoration efforts. Proc Natl Acad Sci 112:14295–14300PubMedCrossRefPubMedCentralGoogle Scholar
  152. Sinclair EA, Verduin J, Krauss SK, Hardinge J, Anthony J, Kendrick GA (2013) A genetic assessment of a successful seagrass meadow (Posidonia australis) restoration trial. Ecol Manag Restor 14:68–71CrossRefGoogle Scholar
  153. Sinclair EA, Krauss SL, Anthony J, Hovey RK, Kendrick GA (2014) The interaction of environment and genetic diversity within meadows of the seagrass Posidonia australis (Posidoniaceae). Mar Ecol Prog Ser 506:87–98CrossRefGoogle Scholar
  154. Sinclair EA, Statton J, Hovey RK, Anthony J, Dixon KW, Kendrick GA (2016) Reproduction at the extremes: pseudovivipary and genetic mosaicism in Posidonia australis Hooker (Posidoniaceae). Ann Bot.  https://doi.org/10.1093/aob/mcv162CrossRefPubMedPubMedCentralGoogle Scholar
  155. Society for Ecological Restoration (2004) The SER international primer on ecological. Restoration. http://www.ser.org
  156. Statton J, Dixon KW, Hovey RK, Kendrick GA (2012) A comparative assessment of approaches and outcomes for seagrass revegetation in Shark Bay and southern Florida. Mar Freshw Res 63:984–993CrossRefGoogle Scholar
  157. Statton J, Cambridge ML, Dixon KW, Kendrick GA (2013) Aquaculture of Posidonia australis seedlings for seagrass restoration programs: effect of sediment type and organic enrichment on growth. Restor Ecol 21(2):250–259CrossRefGoogle Scholar
  158. Statton J, Gustin-Craig S, Dixon KW, Kendrick GA (2015) Edge effects along a seagrass margin result in an increased grazing risk on Posidonia australis transplants. PLoS ONE 10:e0137778PubMedPubMedCentralCrossRefGoogle Scholar
  159. Statton J, Montoya LR, Orth RJ, Dixon KW, Kendrick GA (2017) Identifying critical recruitment bottlenecks limiting seedling establishment in a degraded seagrass ecosystem. Sci Rep 7, 14786Google Scholar
  160. Tanner JE (2015) Restoration of the seagrass Amphibolis antarctica—temporal variability and long-term success. Estuar Coasts 38:668–678CrossRefGoogle Scholar
  161. Tanner JE, Irving AD, Fernandes M, Fotheringham D, McArdle A, Murray-Jones S (2014) Seagrass rehabilitation off metropolitan Adelaide: a case study of loss, action, failure and success. Ecol Manage Restor 15:168–179CrossRefGoogle Scholar
  162. Thomson J, Burkholder D, Heithaus M, Fourqurean J, Fraser MW, Statton J, Kendrick GA (2015) Extreme temperatures, foundation species and abrupt ecosystem shifts: an example from an iconic seagrass ecosystem. Glob Change Biol 21:1463–1474CrossRefGoogle Scholar
  163. Valdemarsen T, Wendelboe K, Egelund JT, Kristensen E, Flindt MR (2011) Burial of seeds and seedlings by the lugworm Arenicola marina hampers eelgrass (Zostera marina) recovery. J Exp Mar Biol Ecol 410:45–52CrossRefGoogle Scholar
  164. van der Heide T, van Nes EH, van Katwijk MM, Olff H, Smolders AJ (2011) Positive feedbacks in seagrass ecosystems—evidence from large-scale empirical data. PLoS ONE 6:e16504PubMedPubMedCentralCrossRefGoogle Scholar
  165. van Katwijk MM, Thorhaug A, Marbà N, Orth RJ, Duarte CM, Kendrick GA, Althuizen IHJ, Balestri E, Bernard G, Cambridge ML, Cunha A, Durance C, Giesen W, Han Q, Hosokawa S, Kiswara W, Komatsu T, Lardicci C, Lee K-S, Meinesz A, Nakaoka M, O’Brien KR, Paling EI, Pickerell C, Ransijn AMA, Verduin JJ (2016) Global analysis of seagrass restoration: the importance of large-scale planting. J Appl Ecol 53(2):567–578CrossRefGoogle Scholar
  166. Van Keulen M, Paling EI, Walker CJ (2003) Effect of planting unit size and sediment stabilization on seagrass transplants in Western Australia. Restor Ecol 11:50–55CrossRefGoogle Scholar
  167. Vande Mijnsbrugge K, Bischoff A, Smith B (2010) A question of origin: where and how to collect seed for ecological restoration. Basic Appl Ecol 11:300–311CrossRefGoogle Scholar
  168. Vergés A, Steinberg PD, Hay ME, Poore AGB, Campbell AH, Ballesteros E, Booth DJ, Coleman MA, Feary DA, Figueira W, Langlois TJ, Marzinelli EM, Mizerek T, Mumby PJ, Nakamura Y, Roughan M, van Sebille E, Gupta AS, Smale DA, Tomas F, Wernberg T, Wilson SK (2014) The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proc R Soc B 281:20140846PubMedCrossRefPubMedCentralGoogle Scholar
  169. Walker D, McComb A (1992) Seagrass degradation in Australian coastal waters. Mar Pollut Bull 25:191–195CrossRefGoogle Scholar
  170. Walker DI, Kendrick GA, McComb AJ (1988) Distribution of seagrasses in Shark Bay, Western Australia, with notes on their ecology. Aquat Bot 30:305–317CrossRefGoogle Scholar
  171. Waycott M, Duarte CM, Carruthers TJB, Orth RJ, Dennison WC, Olyarnik S, Calladine A, Fourqurean JW, Heck KL Jr, Hughes AR, Kendrick GA, Kenworthy WJ, Short FT, Williams SL (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. PNAS 106:12377–12381PubMedCrossRefPubMedCentralGoogle Scholar
  172. Wear RJ, Tanner JE, Hoare SL (2010) Facilitating recruitment of Amphibolis as a novel approach to seagrass rehabilitation in hydrodynamically active waters. Mar Freshw Res 61(10):1123–1133CrossRefGoogle Scholar
  173. Weatherall EJ, Jackson EL, Hendry RA, Campbell ML (2016) Quantifying the dispersal potential of seagrass vegetative fragments: a comparison of multiple subtropical species. Estuar Coast Shelf Sci 169:207–215CrossRefGoogle Scholar
  174. Weeks AR, Sgrò CM, Young AG, Frankham R, Mitchell NJ, Miller KA, Byrne M, Coates DJ, Eldridge MDB, Sunnucks P, Breed MF, James EA, Hoffmann AA (2011) Assessing the benefits and risks of translocations in changing environments: a genetic perspective. Evol App 4:709–725CrossRefGoogle Scholar
  175. Weinstein D, Shugart H (1983) Ecological modeling of landscape dynamics. Disturbance and ecosystems. Springer, BerlinGoogle Scholar
  176. White KS, Westera MB, Kendrick GA (2011) Spatial patterns in fish herbivory in a temperate Australian seagrass meadow. Estuar Coast and Shelf Sci 93(4):366–374Google Scholar
  177. Williams RJ, Meehan AJ (2001) The macrophytes of Port Hacking, NSW. NSW Fisheries Final Report Series, NSW Fisheries Cronulla, AustraliaGoogle Scholar
  178. Williams RJ, Meehan AJ, West G (2003) Status and trend mapping of aquatic vegetation in NSW estuaries. In: Woodroffe CD, Furness RA (eds) Coastal GIS 2003: an integrated approach to Australian coastal issues. Wollongong Papers on Maritime Policy, No. 14Google Scholar
  179. Williams AV, Nevill PG, Krauss SL (2014) Next generation restoration genetics: applications and opportunities. Trends Plant Sci 19(8):529–537.CrossRefPubMedPubMedCentralGoogle Scholar
  180. York PH, Carter AB, Chartrand K, Sankey T, Wells L, Rasheed MA (2015) Dynamics of a deep-water seagrass population on the Great Barrier Reef: annual occurrence and response to a major dredging program. Sci Rep 5:13167PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • John Statton
    • 1
  • Kingsley W. Dixon
    • 4
    • 5
  • Andrew D. Irving
    • 3
  • Emma L. Jackson
    • 3
  • Gary A. Kendrick
    • 6
  • Robert J. Orth
    • 2
  • Elizabeth A. Sinclair
    • 1
    • 5
  1. 1.School of Biological Sciences and Oceans InstituteUniversity of Western AustraliaNedlandsAustralia
  2. 2.College of William and MaryVirginia Institute of Marine ScienceGloucester PointUSA
  3. 3.School of Medical & Applied SciencesCentral Queensland UniversityRockhamptonAustralia
  4. 4.Department of Environment and AgricultureCurtin UniversityPerthAustralia
  5. 5.Kings Park and Botanic GardenWest PerthAustralia
  6. 6.School of Biological Sciences and the Oceans InstituteThe University of Western AustraliaCrawleyAustralia

Personalised recommendations