Mapping, Monitoring and Modelling Seagrass Using Remote Sensing Techniques

  • Stuart PhinnEmail author
  • Chris Roelfsema
  • Eva Kovacs
  • Robert Canto
  • Mitch Lyons
  • Megan Saunders
  • Paul Maxwell


This chapter explains the types of information on the biophysical properties of seagrass and its surrounding environments, which are able to be measured, mapped, monitored and/or modelled using remote sensing techniques. This includes specifying the environmental conditions where these approaches do not work. “Remote sensing” refers to the use of a sensor not in direct contact with the target to measure one or more of its bio-geo-physical-chemical properties. This includes measurements from satellites, airborne, and remotely operated or autonomous above- and below-water systems. Six key topics are covered to show how remote sensing and its integration with ecological field survey methods, ecological theory and modelling, is an operational and accessible tool. Chapters  7,  9 11 in this book are complementary as they explain the biological and physiological bases of seagrasses and how they interact with light. The text is written from ecological perspective to explain “how to” implement remote sensing approaches at scales relevant to science and management problems. Specific details are presented for mapping and monitoring seagrass: extent, composition and biophysical properties from plant to rhizome and regional scales over 103 km2.


  1. Adams MP, Saunders MI, Maxwell PS, Tuazon D, Roelfsema CM, Callaghan DP, Leon J, Grinham AR, O’Brien KR (2015) Prioritizing localized management actions for seagrass conservation and restoration using a species distribution model. Aquat Conserv Mar Freshw EcosystGoogle Scholar
  2. Andréfouët S, Kramer P, Torres-Pulliza D, Joyce KE, Hochberg EJ, Garza-Pérez R, Mumby PJ, Riegl B, Yamano H, White WH, Zubia M, Brock JC, Phinn SR, Naseer A, Hatcher BG, Muller-Karger FE (2003) Multi-site evaluation of IKONOS data for classification of tropical coral reef environments. Remote Sens Environ 88:128–143CrossRefGoogle Scholar
  3. Beaman R (2010) 3DGBR: A high-resolution depth model for the Great Barrier Reef and Coral Sea. In: Marine tropical sciences research facility (MTSRF). Project 2.5i.1a Final Report. Reef and Rainforest Research Centre, Cairns, AustraliaGoogle Scholar
  4. Bearlin AR, Burgman MA, Regan HM (1999) A stochastic model for seagrass (Zostera muelleri) in Port Phillip Bay, Victoria, Australia. Ecol Model 118:131–148CrossRefGoogle Scholar
  5. Benson M, Garmestani A (2011) Can we manage for resilience? The integration of resilience thinking into natural resource management in the United States. Environ Manage 48:392–399CrossRefPubMedGoogle Scholar
  6. Blaschke T, Johansen K, Tiede D (2011) Object-based image analysis for vegetation mapping and monitoring. Adv Environ Remote Sens: Sens Algorithms Appl 241–271Google Scholar
  7. Boström C, Jackson EL, Simenstad CA (2006) Seagrass landscapes and their effects on associated fauna: a review. Estuar Coast Shelf Sci 68:383–403CrossRefGoogle Scholar
  8. Brando VE, Dekker AG (2003) Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality. IEEE Trans Geosci Remote Sens 41:1378–1387CrossRefGoogle Scholar
  9. Callaghan DP, Leon JX, Saunders MI (2015) Wave modelling as a proxy for seagrass ecological modelling: comparing fetch and process-based predictions for a bay and reef lagoon. Estuar Coast Shelf Sci 153:108–120Google Scholar
  10. Carr J, D’Odorico P, McGlathery K, Wiberg P (2010) Stability and bistability of seagrass ecosystems in shallow coastal lagoons: role of feedbacks with sediment resuspension and light attenuation. J Geophys Res Biogeosci 2005–2012:115Google Scholar
  11. Carr JA, D’Odorico P, McGlathery KJ, Wiberg PL (2011) Modeling the effects of climate change on eelgrass stability and resilience: future scenarios and leading indicators of collapse. Mar Ecol Prog Ser 448:289–301CrossRefGoogle Scholar
  12. Carr JA, D’Odorico P, McGlathery KJ, Wiberg PL (2012) Stability and resilience of seagrass meadows to seasonal and interannual dynamics and environmental stress. J Geophys Res Biogeosci 2005–2012:117Google Scholar
  13. Carruthers TJB, Dennison WC, Longstaff BJ, Waycott M, Abal EG, McKenzie LJ, Long WJL (2002) Seagrass habitats of Northeast Australia: models of key processes and controls. Bull Mar Sci 71:1153–1169Google Scholar
  14. Carruthers TJB, Dennison WC, Kendrick GA, Waycott M, Walker DI, Cambridge ML (2007) Seagrasses of south–west Australia: a conceptual synthesis of the world’s most diverse and extensive seagrass meadows. J Exp Mar Biol Ecol 350:21–45CrossRefGoogle Scholar
  15. Carter AB, Mckenna SA, Rasheed MA, Mckenzie L, Coles RG (2016) Seagrass mapping synthesis: a resource for coastal management in the Great Barrier Reef World Heritage Area. In: Report to the national environmental science programme. Reef and Rainforest Research Centre Limited, Cairns, 22 pGoogle Scholar
  16. CEOS (2015) The earth observation handbook [Online]. Committee on Earth Observation Satellites. Available:
  17. Cogan CB, Todd BJ, Lawton P, Noji TT (2009) The role of marine habitat mapping in ecosystem-based management. ICES J Mar Sci: J du Conseil 66:2033–2042CrossRefGoogle Scholar
  18. Collier C, Waycott M, McKenzie L (2012) Light thresholds derived from seagrass loss in the coastal zone of the northern Great Barrier Reef, Australia. Ecol Ind 23:211–219CrossRefGoogle Scholar
  19. Congalton RG, Green K (1999) Assessing the accuracy of remotely sensed data: principles and practices. CRC Press, New YorkGoogle Scholar
  20. Creed JC (1999) Distribution, seasonal abundance and shoot size of the seagrass Halodule wrightii near its southern limit at Rio de Janeiro state, Brazil. Aquat Bot 65:47–58CrossRefGoogle Scholar
  21. Dahdouh-Guebas F (2002) The use of remote sensing and GIS in the sustainable management of tropical coastal ecosystems. Environ Dev Sustain 4:93–112CrossRefGoogle Scholar
  22. de Boer W (2007) Seagrass–sediment interactions, positive feedbacks and critical thresholds for occurrence: a review. Hydrobiologia 591:5–24CrossRefGoogle Scholar
  23. Dekker AG, Brando VE, Anstee JM (2005) Retrospective seagrass change detection in a shallow coastal tidal Australian lake. Remote Sens Environ 97:415–433CrossRefGoogle Scholar
  24. Dekker A, Brando V, Anstee J, Fyfe S, Malthus T, Karpouzli E (2006) Remote sensing of seagrass ecosystems: use of spaceborne and airborne sensors. In: Seagrasses: biology, ecology and conservation, Springer, NetherlandsGoogle Scholar
  25. Dennison WC, Abal EG (1999) Moreton Bay study: a scientific basis for the healthy waterways campaign. South East QLD Regional Water Quality Management Strategy TeamGoogle Scholar
  26. Duarte CM (1991) Seagrass depth limits. Aquat Bot 40:363–377CrossRefGoogle Scholar
  27. Elkalay K, Frangoulis C, Skliris N, Goffart A, Gobert S, Lepoint G, Hecq J-H (2003) A model of the seasonal dynamics of biomass and production of the seagrass Posidonia oceanica in the Bay of Calvi (Northwestern Mediterranean). Ecol Model 167:1–18CrossRefGoogle Scholar
  28. Farina A (1998) Principles and methods in landscape ecology. Springer, NetherlandsCrossRefGoogle Scholar
  29. Ferwerda J, de Leeuw J, Atzberger C, Vekerdy Z (2007) Satellite-based monitoring of tropical seagrass vegetation: current techniques and future developments. Hydrobiologia 591:59–71CrossRefGoogle Scholar
  30. Fong P, Harwell MA (1994) Modeling seagrass communities in tropical and subtropical bays and estuaries: a mathematical model synthesis of current hypotheses. Bull Mar Sci 54(25):757–781 Google Scholar
  31. Fonseca M, Whitfield PE, Kelly NM, Bell SS (2002) Modeling seagrass landscape pattern and associated ecological attributes. Ecol Appl 12:218–237CrossRefGoogle Scholar
  32. Foster G, Gleason A, Costa B, Battista T, Taylor C (2013) Acoustic applications. In: Goodman JA, Purkis SJ, Phinn S R (eds) Coral reef remote sensing. Springer, NetherlandsGoogle Scholar
  33. Fyfe SK (2003) Spatial and temporal variation in spectral reflectance: are seagrass species spectrally distinct? Limnol Oceanogr 48:464–479CrossRefGoogle Scholar
  34. Grech A, Coles RG (2010) An ecosystem-scale predictive model of coastal seagrass distribution. Aquat Conserv Mar Freshw Ecosyst 20:437–444CrossRefGoogle Scholar
  35. Green EP, Mumby PJ, Edwards AJ, Clark CD (1996) A review of remote sensing for the assessment and management of tropical coastal resources. Coast Manage 24:1–40CrossRefGoogle Scholar
  36. Gunderson LH, Allen CR, Holling CS (2009) Foundations of ecological resilience. In: Gunderson LH, Allen CR, Holling CS (eds) Island PressGoogle Scholar
  37. Hedley JD, Harborne AR, Mumby PJ (2005) Technical note: simple and robust removal of sun glint for mapping shallow-water benthos. Int J Remote Sens 26:2107–2112CrossRefGoogle Scholar
  38. Hopley D, Smithers S, Parnell K (2007) The Geomorphology of the Great Barrier Reef. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  39. Hossain MS, Bujang JS, Zakaria MH, Hashim M (2015) The application of remote sensing to seagrass ecosystems: an overview and future research prospects. Int J Remote Sens 36:61–114CrossRefGoogle Scholar
  40. Hughes TP, Graham NAJ, Jackson JBC, Mumby PJ, Steneck RS (2010) Rising to the challenge of sustaining coral reef resilience. Trends Ecol Evol 25:633–642CrossRefPubMedGoogle Scholar
  41. Hyland SJ, Courtney A, Butler C (1989) Distribution of seagrass in the Moreton region from Coolangatta to Noosa [Queensland]. Information Series-Queensland Department of Primary Industries (Australia)Google Scholar
  42. Kelly NM, Fonseca M, Whitfield P (2001) Predictive mapping for management and conservation of seagrass beds in North Carolina. Aquat Conserv Mar Freshw Ecosyst 11:437–451CrossRefGoogle Scholar
  43. Kendrick GA, Eckersley J, Walker DI (1999) Landscape-scale changes in seagrass distribution over time: a case study from Success Bank, Western Australia. Aquat Bot 65:293–309CrossRefGoogle Scholar
  44. Kendrick GA, Marbà N, Duarte CM (2005) Modelling formation of complex topography by the seagrass Posidonia oceanica. Estuar Coast Shelf Sci 65:717–725CrossRefGoogle Scholar
  45. Kenworthy WJ (2000) The role of sexual reproduction in maintaining populations of Halophila decipiens: implications for the biodiversity and conservation of tropical seagrass ecosystems. Pac Conserv Biol 5:260CrossRefGoogle Scholar
  46. Kilminster K, Mcmahon K, Waycott M, Kendrick GA, Scanes P, Mckenzie L, O’Brien KR, Lyons M, Ferguson A, Maxwell P, Glasby T, Udy J (2015) Unravelling complexity in seagrass systems for management: Australia as a microcosm. Sci Total EnvironGoogle Scholar
  47. Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems, 2nd edn. Cambridge University Press, New YorkCrossRefGoogle Scholar
  48. Koch EW (2001) Beyond light: physical, geological, and geochemical parameters as possible submersed aquatic vegetation habitat requirements. Estuaries 24:1–17CrossRefGoogle Scholar
  49. Koch EW, Ackerman J D, Verduin J, van Keulen M (2006) Fluid dynamics in seagrass ecology—from molecules to ecosystems. In: Seagrasses: biology, ecology and conservation. Springer, New YorkGoogle Scholar
  50. Koch MS, Schopmeyer SA, Nielsen OI, Kyhn-Hansen C, Madden CJ (2007) Conceptual model of seagrass die-off in Florida Bay: links to biogeochemical processes. J Exp Mar Biol Ecol 350:73–88CrossRefGoogle Scholar
  51. Larkum AWD, Orth R, Duarte CM (2006) Seagrasses: biology ecology and conservation. Springer, NetherlandsGoogle Scholar
  52. Lathrop RG, Montesano P, Haag S (2006) Multi-scale segmentation approach to mapping seagrass habitats using airborne digital camera imagery. Photogram Eng Remote Sens 72:665–675CrossRefGoogle Scholar
  53. Leon J (2012) A 20 m spatial resolution seamless multisource Digital Elevation/Depth Model for Lizard Island, northern Great Barrier Reef. Supplement to: Leon JX, Phinn SR, Hamylton S, Saunders MI (2013) Filling the ‘white ribbon’—a seamless multisource Digital Elevation/Depth Model for Lizard Island, northern Great Barrier Reef [Online]. Available
  54. Lyons M, Phinn S, Roelfsema C (2011) Integrating quickbird multi-spectral satellite and field data: mapping bathymetry, seagrass cover, seagrass species and change in Moreton Bay, Australia in 2004 and 2007. Remote Sens 3:42–64CrossRefGoogle Scholar
  55. Lyons MB, Phinn SR, Roelfsema CM (2012) Long term land cover and seagrass mapping using Landsat and object-based image analysis from 1972 to 2010 in the coastal environment of South East Queensland, Australia. ISPRS J Photogram Remote Sens 71:34–46CrossRefGoogle Scholar
  56. Lyons MB, Roelfsema CM, Phinn SR (2013) Towards understanding temporal and spatial dynamics of seagrass landscapes using time-series remote sensing. Estuar Coast Shelf Sci 120:42–53CrossRefGoogle Scholar
  57. Lyons M, Roelfsema C, Kovacs E, Samper-Villarreal J, Saunders M, Maxwell P, Phinn S (2015) Rapid monitoring of seagrass biomass using a simple linear modelling approach, in the field and from space. Mar Ecol Prog Ser 530:1–14CrossRefGoogle Scholar
  58. Lyzenga DR (1978) Passive remote sensing techniques for mapping water depth and bottom features. Appl Opt 17:379–383CrossRefPubMedGoogle Scholar
  59. Lyzenga DR (1981) Remote sensing of bottom reflectance and water attenuation parameters in shallow water using aircraft and Landsat data. Int J Remote Sens 2:71–82CrossRefGoogle Scholar
  60. March D, Alós J, Cabanellas-Reboredo M, Infantes E, Jordi A, Palmer M (2013) A Bayesian spatial approach for predicting seagrass occurrence. Estuar Coast Shelf Sci 131:206–212CrossRefGoogle Scholar
  61. Meling-López AE, Ibarra-Obando SE (1999) Annual life cycles of two Zostera marina L. populations in the Gulf of California: contrasts in seasonality and reproductive effort. Aquat Bot 65:59–69CrossRefGoogle Scholar
  62. Mobley C (1994) Light and water: radiative transfer in natural waters academic. San Diego, Calif, p 592Google Scholar
  63. O’Brien KR, Grinham AR, Roelfsema Chris M, Saunders Megan I, Dennison W (2011) Viability criteria for the presence of the seagrass Zostera muelleri in Moreton Bay, based on benthic light dose. In: Modelling and simulation society of Australia and New ZealandGoogle Scholar
  64. Orth RJ, Carruthers TJ, Dennison WC, Duarte CM, Fourqurean JW, Heck KL, Hughes AR, Kendrick GA, Kenworthy WJ, Olyarnik S (2006) A global crisis for seagrass ecosystems. Bioscience 56:987–996CrossRefGoogle Scholar
  65. Phinn S, Dekker A, Brando VE, Roelfsema C (2005) Mapping water quality and substrate cover in optically complex coastal and reef waters: an integrated approach. Mar Pollut Bull 51:459–469CrossRefPubMedGoogle Scholar
  66. Phinn S, Roelfsema C, Dekker A, Brando V, Anstee J (2008) Mapping seagrass species, cover and biomass in shallow waters: an assessment of satellite multi-spectral and airborne hyper-spectral imaging systems in Moreton Bay (Australia). Remote Sens Environ 112:3413–3425CrossRefGoogle Scholar
  67. Plus M, Chapelle A, Ménesguen A, Deslous-Paoli J-M, Auby I (2003) Modelling seasonal dynamics of biomasses and nitrogen contents in a seagrass meadow (Zostera noltii Hornem.): application to the Thau lagoon (French Mediterranean coast). Ecol Model 161:213–238CrossRefGoogle Scholar
  68. Purkis S, Roelfsema C (2015) 11 Remote sensing of submerged aquatic vegetation and coral reefs. Remote Sens Wetlands Appl Adv 223Google Scholar
  69. Robbins BD, Bell SS (1994) Seagrass landscapes: a terrestrial approach to the marine subtidal environment. Trends Ecol Evol 9:301–304CrossRefPubMedGoogle Scholar
  70. Roelfsema CM, Phinn SR, Udy N, Maxwell P (2009) An integrated field and remote sensing approach for mapping seagrass cover, Moretón Bay, Australia. J Spat Sci 54:45–62CrossRefGoogle Scholar
  71. Roelfsema CM, Phinn SR, Tracey D, Speirs J, Hewson M, Johansen K (2010) A web based toolkit for using remote sensing to map and monitor terrestrial, marine and atmospheric environments.
  72. Roelfsema C, Kovacs EM, Saunders MI, Phinn S, Lyons M, Maxwell P (2013) Challenges of remote sensing for quantifying changes in large complex seagrass environments. Estuar Coast Shelf Sci 133:161–171CrossRefGoogle Scholar
  73. Roelfsema CM, Lyons M, Kovacs EM, Maxwell P, Saunders MI, Samper-Villarreal J, Phinn SR (2014) Multi-temporal mapping of seagrass cover, species and biomass: a semi-automated object based image analysis approach. Remote Sens Environ 150:172–187CrossRefGoogle Scholar
  74. Saunders MI, Leon J, Phinn SR, Callaghan DP, O’Brien KR, Roelfsema CM, Lovelock CE, Lyons MB, Mumby PJ (2013) Coastal retreat and improved water quality mitigate losses of seagrass from sea level rise. Glob Change Biol 19:2569–2583CrossRefGoogle Scholar
  75. Saunders MI, Leon JX, Callaghan DP, Roelfsema CM, Hamylton S, Brown CJ, Baldock T, Golshani A, Phinn SR, Lovelock CE, Hoegh-Guldberg O, Woodroffe CD, Mumby PJ (2014) Interdependency of tropical marine ecosystems in response to climate change. Nat Clim Change 4:724–729CrossRefGoogle Scholar
  76. Saunders MI, Bayraktarov E, Roelfsema Chris M, Leon Javier X, Samper-Villarreal J, Phinn Stuart R, Lovelock Catherine E , Mumby Peter J (2015) Spatial and temporal variability of seagrass at Lizard Island, Great Barrier Reef. Botanica MarinaGoogle Scholar
  77. Sintes T, Marbà N, Duarte CM, Kendrick GA (2005) Nonlinear processes in seagrass colonisation explained by simple clonal growth rules. Oikos 108:165–175CrossRefGoogle Scholar
  78. Sintes T, Marbà N, Duarte C (2006) Modeling nonlinear seagrass clonal growth: Assessing the efficiency of space occupation across the seagrass flora. Estuaries Coasts 29:72–80CrossRefGoogle Scholar
  79. Stevens T, Connolly RM (2004) Testing the utility of abiotic surrogates for marine habitat mapping at scales relevant to management. Biol Cons 119:351–362CrossRefGoogle Scholar
  80. Turner M, Gardner RH, O’Neill RV (2001) Landscape ecology in theory and practice. Springer, New York, USAGoogle Scholar
  81. van der Heide T, Smolders AJP, Rijkens BGA, van Nes EH, van Katwijk MM, Roelofs JGM (2008) Toxicity of reduced nitrogen in eelgrass (Zostera marina) is highly dependent on shoot density and pH. Oecologia 158:411–419CrossRefPubMedGoogle Scholar
  82. van der Heide T, Bouma TJ, van Nes EH, van de Koppel J, Scheffer M, Roelofs JGM, van Katwijk MM, Smolders AJP (2010) Spatial self-organized patterning in seagrasses along a depth gradient of an intertidal ecosystem. Ecology 91:362–369CrossRefPubMedGoogle Scholar
  83. Verhagen JHG, Nienhuis PH (1983) Simulation model of production, seasonal changes in biomass and distribution of eelgrass (Zostera marina) in Lake Grevelingen. Mar Ecol Prog Ser 10:187–195CrossRefGoogle Scholar
  84. Waycott M, Duarte CM, Carruthers TJ, Orth RJ, Dennison WC, Olyarnik S, Calladine A, Fourqurean JW, Heck KL, Hughes AR (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci 106:12377–12381CrossRefPubMedGoogle Scholar
  85. Wortmann J, Hearne JW, Adams JB (1997) A mathematical model of an estuarine seagrass. Ecol Model 98:137–149CrossRefGoogle Scholar
  86. Wu J (1999) Hierarchy and scaling: extrapolating information along a scaling ladder. Can J Remote Sens 25:367–380CrossRefGoogle Scholar
  87. Wu J, Jones B, Li H, Loucks OL (2006) Scaling and uncertainty analysis in ecology, SpringerGoogle Scholar
  88. Wulder MA, Masek JG, Cohen WB, Loveland TR, Woodcock CE (2012) Opening the archive: how free data has enabled the science and monitoring promise of Landsat. Remote Sens Environ 122:2–10CrossRefGoogle Scholar
  89. Young P, Kirkman H (1975) The seagrass communities of Moreton Bay, Queensland. Aquat Bot 1:191–202CrossRefGoogle Scholar
  90. Zimmerman RC (2006) Light and photosynthesis in seagrass meadows. In: Seagrasses: biology, ecology and conservation. Springer, NetherlandsGoogle Scholar
  91. Zimmerman RC, Dekker A (2006) Aquatic optics: basic concepts for understanding how light affects seagrasses and makes them measurable from space. In: Seagrasses: biology, ecology and conservation. Springer, NetherlandsGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Stuart Phinn
    • 2
    • 1
    Email author
  • Chris Roelfsema
    • 1
    • 2
  • Eva Kovacs
    • 1
  • Robert Canto
    • 1
    • 2
  • Mitch Lyons
    • 3
  • Megan Saunders
    • 5
  • Paul Maxwell
    • 4
  1. 1.Remote Sensing Research Centre, School of Earth and Environmental SciencesThe University of QueenslandSt LuciaAustralia
  2. 2.School of Earth and Environmental SciencesThe University of QueenslandSt LuciaAustralia
  3. 3.Centre for Ecosystem ScienceUniversity of New South WalesKensingtonAustralia
  4. 4.Monitoring and Research, Healthy Land and WaterBrisbaneAustralia
  5. 5.Global Change InstituteThe University of QueenslandSt LuciaAustralia

Personalised recommendations