Photosynthesis and Metabolism of Seagrasses

  • Anthony W. D. LarkumEmail author
  • Mathieu Pernice
  • Martin Schliep
  • Peter Davey
  • Milan Szabo
  • John A. Raven
  • Mads Lichtenberg
  • Kasper Elgetti Brodersen
  • Peter J. Ralph


Seagrasses have a unique leaf morphology where the major site for chloroplasts is in the epidermal cells, stomata are absent and aerenchyma is present inside the epidermis. This means that the major site for photosynthesis is in the epidermis. Furthermore the lack of stomata means that the route for carbon uptake is via inorganic carbon (Ci) uptake across the vestigial cuticle and through the outer plasma membranes. Since the leaf may at times be in an unstirred situation diffusion through an unstirred layer outside the leaf may be a large obstacle to carbon uptake. The existence of a carbon concentrating mechanism is discussed, but its existence to date is not proven. Active bicarbonate uptake across the plasmalemma does not seem to operate; an external carbonic anhydrase and an extrusion of protons seem to play a role in enhancing CO2 uptake. There is some evidence that a C4 mechanism plays a role in carbon fixation but more evidence from “omics” is required. Photorespiration certainly occurs in seagrasses and an active xanthophyll cycle is present to cope with damaging high light, but both these biochemical mechanisms need further work. Finally, epiphytes pose a problem which impedes the uptake of Ci and modifies the light environment inside the leaves.


  1. Abel KM, Drew EA (1989) Carbon metabolism. In: Larkum AWD, McComb AJ, Shepherd SA (eds) Biology of seagrasses. Elsevier Press, Amsterdam, pp 760–796Google Scholar
  2. Abal EG, Loneragan N, Bowen P, Perry CJ, Udy JW, Dennison WC (1994) Physiological and morphological responses of the seagrass Zostera capricorni Aschers. to light intensity. J Exp Mar Biol Ecol 178:113–29Google Scholar
  3. Alexandre A, Silva J, Buapet P, Björk M, Santos R (2012) Effects of CO2 enrichment on photosynthesis, growth, and nitrogen metabolism of the seagrass Zostera noltii. Ecol Evol 2:2620–2630CrossRefGoogle Scholar
  4. Andrews TJ, Abel KM (1979) Photosynthetic carbon metabolism in seagrasses. 14C labelling evidence for the C3 pathway. Plant Physiol 63:650–656PubMedPubMedCentralCrossRefGoogle Scholar
  5. Aubry S, Brown NJ, Hibberd JM (2011) The role of proteins in C3 plants prior to their recruitment into the C4 pathway. J Exp Bot 62:3049–3059PubMedCrossRefGoogle Scholar
  6. Badger MR, von Caemmerer S, Ruuska S, Nakano H (2000) Electron flow to oxygen in higher plants and algae: Rates and control of direct photoreduction (Mehler reaction) and rubisco oxygenase. Philos Trans R Soc Lond B Biol Sci 355:1433–46Google Scholar
  7. Barnabas AD (1982) Fine structure of the leaf epidermis of Thalassodendron ciliatum (Forsk.) den Hartog. Aquat Bot 12:41–55CrossRefGoogle Scholar
  8. Beer S, Björk M (2000) Measuring rates of photosynthesis of two tropical seagrasses by pulse amplitude modulated (PAM) fluorometry. Aquat Bot 66:69–76CrossRefGoogle Scholar
  9. Beer S, Rehnberg J (1997) The acquisition of inorganic carbon by the seagrass Zostera marina. Aquat Bot 56:277–283Google Scholar
  10. Beer S, Shomer-Ilan A, Waisel Y (1980) Carbon Metabolism in Seagrasses II. Patterns of photosynthetic CO2 incorporation. J Exp Bot 31:1019–1026CrossRefGoogle Scholar
  11. Beer S, Björk M, Hellblom F, Axelsson L (2002) Inorganic carbon utilization in marine angiosperms (seagrasses). Funct Plant Biol 29:349–354CrossRefGoogle Scholar
  12. Beer S, Mtolera M, Lyimo T, Bjork M (2006) The photosynthetic performance of the tropical seagrass Halophila ovalis in the upper intertidal. Aquat Bot 84:367–71Google Scholar
  13. Benedict CR, Scott JR (1976) Photosynthetic carbon metabolism of a marine grass. Plant Physiol 57(6):876–880PubMedPubMedCentralCrossRefGoogle Scholar
  14. Benedict CR, Wong WWL, Wong JHH (1980) Fractionation of the stable isotopes of inorganic carbon by seagrasses. Plant Physiol 65:512–517PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bite JS, Campbell SJ, McKenzie LJ, Coles RG (2007) Chlorophyll fluorescence measures of seagrasses Halophila ovalis and Zostera capricorni reveal differences in response to experimental shading. Mar Biol 152:405–414CrossRefGoogle Scholar
  16. Black CC Jr, Burris JA, Everson RG (1976) Influence of oxygen concentration on photosynthesis in marine plants. Aust J Pl Physiol 3:81–86CrossRefGoogle Scholar
  17. Borum J (1983) The quantitative role of macrophytes, epiphytes, and phytoplankton under different nutrient conditions in Roskilde Fjord, Denmark. In: Proceedings of the international symposium on aquatic macrophytes, Nijmegen, 18–23 Sept 1983, pp 35–40Google Scholar
  18. Borum J, Pedersen O, Greve TM, Frankovich TA, Zieman JC, Fourqurean JEt (2005) The potential role of plant oxygen and sulphide dynamics in die-off events of the tropical seagrass, Thalassia testudinum. J Ecol 93:148–158CrossRefGoogle Scholar
  19. Borum J, Pedersen O, Kotula L, Fraser MW, Statton J, Colmer TD, Kendrick GA (2016) Photosynthetic response to globally increasing CO2 of co-occurring temperate seagrass species. Plant Cell Environ 39:1240–1250PubMedCrossRefPubMedCentralGoogle Scholar
  20. Bowes G (2011) Single-cell C4 photosynthesis in aquatic plants. In: Raghavendra AS, Sage RF (eds) C4 photosynthesis and related CO2 concentrating mechanisms, vol 32. Advances in photosynthesis and respiration. Springer, Berlin, pp 63–80CrossRefGoogle Scholar
  21. Bowes G, Ogren W (1972) Oxygen inhibition and other properties of soybean ribulose 1,5-diphosphate carboxylase. J Biol Chem 47:2171–2176Google Scholar
  22. Bowes G, Rao SK, Estavillo GM, Reiskind JB (2002) C4 mechanisms in aquatic angiosperms: Comparisons with terrestrial C4 systems. Funct Plant Biol 29:379–392Google Scholar
  23. Brett CL, Donowitz M, Rao R (2005) Evolutionary origins of eukaryotic sodium-proton exchangers. Am J Physiol Cell Biol 288:C223–C239CrossRefGoogle Scholar
  24. Briggs GE (1959) Bicarbonate ions as a source of carbon dioxide for photosynthesis. J Exp Bot 10:1–16CrossRefGoogle Scholar
  25. Brodersen KE, Nielsen DA, Ralph PJ, Kühl M (2015a) Oxic microshield and local pH enhancement protects Zostera muelleri from sediment derived hydrogen sulphide. New Phytol 205:1264–1276PubMedCrossRefGoogle Scholar
  26. Brodersen KE, Lichtenberg M, Paz L-C, Kühl M (2015b) Epiphyte-cover on seagrass (Zostera marina L.) leaves impedes plant performance and radial O2 loss from the below-ground tissue. Front Mar Sci 2:58. Scholar
  27. Brush MJ, Nixon S (2002) Direct measurements of light attenuation by epiphytes on eelgrass Zostera marina. Mar Ecol Prog Ser 238:73–79CrossRefGoogle Scholar
  28. Bryant KR, Tay HW, Pilditch CA, Lundquist CJ, Hunt HL (2007) The effect of seagrass (Zostera muelleri) on boundary-layer hydrodynamics in Whangapoua Estuary, New Zealand. J Res Coast SI50:668–672Google Scholar
  29. Buapet P, Rasmusson LM, Gullströ M, Björk M (2013) Photorespiration and carbon limitation determine productivity in temperate seagrasses. PLoS ONE 8:e83804. Scholar
  30. Burnell OW, Connell SD, Irving AD, Watling BD, Russell BD (2014) Contemporary reliance on bicarbonate predicts increased growth of seagrass Amphibolis antarctica in a high-CO2 world. Conserv Physiol 2:cou052. Scholar
  31. Burkholder JM, Tomasko DA, Touchette BW (2007) Seagrasses and eutrophication. J Exp Mar Biol Ecol 350:46–72Google Scholar
  32. Campbell SJ, Kerville SP, Coles RG, Short F (2008) Photosynthetic responses of subtidal seagrasses to a daily light cycle in Torres Strait: a comparative study. Cont Shelf Res 28:2275–2281CrossRefGoogle Scholar
  33. Carr H, Axelsson L (2008) Photosynthetic utilization of bicarbonate in Zostera marina is reduced by inhibitors of mitochondrial ATPase and electron transport. Plant Physiol 147:879–885PubMedPubMedCentralCrossRefGoogle Scholar
  34. Chi S, Wu S, Yu J, Wang X, Tang X, Liu T (2014) Phylogeny of C4-photosynthetic enzymes based on algal transcriptomic and genomic data supports an archael/proteobacterial origin and multiple duplication for most C4-related genes. PLoS ONE 9:e110154. Scholar
  35. Chung MH, Lee KS (2008) Species Composition of the epiphytic diatoms on the leaf tissues of three Zostera species distributed on the southern coast of Korea. Algae 23:75–81CrossRefGoogle Scholar
  36. Collier CJ, Lavery PS, Ralph PJ, Masini RJ (2009) Shade-induced response and recovery of the seagrass Posidonia sinuosa. J Exp Mar Biol Ecol 370:89–103CrossRefGoogle Scholar
  37. Cummings ME, Zimmerman RC (2003) Light harvesting and the package effect in the seagrasses Thalassia testudinum Banks ex König and Zostera marina L.: optical constraints on photoacclimation. Aquat Bot 75:261–271CrossRefGoogle Scholar
  38. Dattolo E, Gu J, Bayer PE, Mazzuca S, Serra IA, Spadafora A, Bernardo L, Natali L, Cavallini A, Procaccini G (2013) Acclimation to different depths by the marine angiosperm Posidonia oceanica: transcriptomic and proteomic profiles. Front Plant Sci 4:195PubMedPubMedCentralCrossRefGoogle Scholar
  39. Dattolo E, Ruocco M, Brunet C, Lorenti M, Lauritano C, D’Esposito D, De Luca P, Sanges R, Mazzuca S, Procaccini G (2014) Response of the seagrass Posidonia oceanica to different light environments: Insights from a combined molecular and photo-physiological study. Mar Environ Res 101:225–236PubMedCrossRefGoogle Scholar
  40. Davey PA, Pernice M, Sablok G, Larkum A, Lee HT, Edwards D, Lee HT, Golicz A, Dolferus R, Ralph R (2016) The emergence of molecular profiling and omics techniques in seagrass biology; furthering our understanding of seagrasses. Funct Integr Genomics 16:465–480Google Scholar
  41. Demir Y, Coşcun F, Buhan E, Demir N (2006) Non-cytosolic carbonic anhydrases from leaves and root of Posidonia oceanica (Lille.) Delile, 1813. Int J Agric Biol 4:554–559Google Scholar
  42. Dennison WC, Orth RJ, Moore KA, Stevenson JC, Carter V, Kollar S, Bergstrom PW, Batiuk RA (1993) Assessing water quality with submersed aquatic vegetation. Bioscience 43:86–94CrossRefGoogle Scholar
  43. Doubnerová V, Ryšlavá H (2011) What can enzymes of C4 photosynthesis do for C3 plants under stress? Plant Sci 180:575–583PubMedCrossRefGoogle Scholar
  44. Downton WJS, Bishop DG, Larkum AWD, Osmond CB (1976) Oxygen inhibition of photosynthetic oxygen evolution in marine plants. Aust J Plant Physiol 3:73–79CrossRefGoogle Scholar
  45. Drew EA (1978) Factors affecting photosynthesis and its seasonal variation in the seagrasses Cymodocea nodosa (Ueria) Aschers and Posidonia oceanica (L) Dehle in the Mediterranean. J Exp Mar Biol Ecol 31:173–194CrossRefGoogle Scholar
  46. Dromgoole FI (1978) The effects of oxygen on dark respiration and apparent photosynthesis of marine macro-algae. Aquat Bot 4:281–297CrossRefGoogle Scholar
  47. Duarte CM (1991) Seagrass depth limits. Aquat Bot 40:363–377CrossRefGoogle Scholar
  48. Durako MJ (1993) Photosynthetic utilization of CO2 (aq) and HCO3 in Thalassia testudinum (Hydrocharitaceae). Mar Biol 115:373–380CrossRefGoogle Scholar
  49. Durako MJ (2007) Leaf optical properties and photosynthetic leaf absorptances in several Australian seagrasses. Aquat Bot 87:83–89CrossRefGoogle Scholar
  50. Enríquez S, Merino M, Iglesias-Prieto R (2002) Variations in the photosynthetic performance along the leaves of the tropical seagrass Thalassia testudinum. Mar Biol 140:891–900CrossRefGoogle Scholar
  51. Fernández JA, García-Sández MJ, Felle FH (1999) Physiological evidence for a proton pump and sodium exclusion mechanisms at the plasma membrane of the marine angiosperm Zostera marina L. J Exp Bot 50:1763–1768Google Scholar
  52. Fich EA, Segerson NA, Rose JKC (2016) The plant polyester cutin: biosynthesis, structures, and biological roles. Annu Rev Plant Biol 67:207–233PubMedCrossRefGoogle Scholar
  53. Figueroa FL, Jiménez C, Viñegla B, Pérez-Rodríguez E, Aguilera J, Flores-Moya A, Altamirano M, Lebert M, Häder DP (2002) Effects of solar UV radiation on photosynthesis of the marine angiosperm Posidonia oceanica from southern Spain. Mar Ecol Prog Ser 230:59–70CrossRefGoogle Scholar
  54. Filion-Myklebust C, Norton TA (1981) Epidermis shedding in the brown seaweed Ascophyllum nodosum (L.) Le Jolis, and its ecological significance. Mar Biol Lett 2:45–51Google Scholar
  55. Frost-Christensen H, Sand-Jensen K (1992) The quantum efficiency of photosynthesis in macroalgae and submerged angiosperms. Oecologia 91:377–384PubMedCrossRefGoogle Scholar
  56. Frost-Christensen H, Jørgensen LB, Floto F (2003) Species specificity of resistance on oxygen diffusion in their cuticular membranes from amphibious plants. Plant Cell Environ 26:561–569CrossRefGoogle Scholar
  57. Garciadeblás B, Haro R, Benito B (2007) Cloning of two SOS1 transporters from the seagrass Cymodocea nodosa. SOS1 transporters from Cymodocea and Arabadopsis mediate potassium uptake in bacteria. Plant Mol Biol 63:479–490PubMedCrossRefGoogle Scholar
  58. García-Sánchez MJ, Jaime JP, Ramos A, Sanders D, Fernández JA (2000) Sodium-dependent nitrate transport at the plasma membrane of leaf cells of the marine higher plant Zostera marina L. Plant Physiol 122:879–885PubMedPubMedCentralCrossRefGoogle Scholar
  59. Genazzio MA, Durako MJ (2015) Photochemical efficiency of Thalassia testudinum varies in response to repeated shading events and unpredictable weather. Mar Ecol Prog Ser 539:127–137CrossRefGoogle Scholar
  60. Greco M, Chiappetta A, Bruno L, Bitonti M (2013) Effects of light deficiency on genome methylation in Posidonia oceanica. Mar Ecol Prog Ser 473:103–114CrossRefGoogle Scholar
  61. Golicz AA, Schliep M, Lee HT, Larkum AWD, Dolferus R, Batley J, Chan CK, Sablok G, Ralph PJ Edwards, D (2015) Genome-wide survey of the seagrass Zostera muelleri suggests modification of the ethylene signalling network. J Exp Bot 66:1489–1498Google Scholar
  62. Greve TM, Borum J, Pedersen O (2003) Meristematic oxygen variability in eelgrass (Zostera marina). Limnol Oceanogr 48:210–216CrossRefGoogle Scholar
  63. Harlin MM (1973) Transfer of products between epiphytic marine algae and host plants. J Phycol 9:243–248Google Scholar
  64. Hellblom F, Axelsson L (2003) External HCO3 dehydration maintained by acid zones in the plasma membrane is an important component of the photosynthetic carbon uptake in Ruppia cirrhosa. Photosynth Res 77:173–181PubMedCrossRefPubMedCentralGoogle Scholar
  65. Hellblom F, Beer S, Björk M, Axelsson L (2001) A buffer sensitive in carbon utilization system in Zostera marina. Aquat Bot 69:55–62CrossRefGoogle Scholar
  66. Ho DT, Lowe S, Smith MJ, Schlosser P, Harvey M, Hill P (2006) Measurements of air-sea gas exchange at high wind speeds in the southern ocean: implications for global parameterization. Geophys Res Lett 33:L16611. Scholar
  67. Horn LE, Paling EI, van Keulen M (2009) Photosynthetic recovery of transplanted Posidonia sinuosa, Western Australia. Aquat Bot 90:149–156CrossRefGoogle Scholar
  68. Hu XP, Burdige DJ, Zimmerman RC (2012) delta C-13 is a signature of light availability and photosynthesis in seagrass. Limnol Oceanogr 57:441–448CrossRefGoogle Scholar
  69. Hughes RG, Johnson S, Smith ID (1991) The growth-patterns of some hydroids that are obligate epiphytes of seagrass Leaves. Hydrobiologia 216:205–210CrossRefGoogle Scholar
  70. James PL, Larkum AWD (1996) Photosynthetic inorganic carbon acquisition in Posidonia australis. Aquat Bot 55:149–157CrossRefGoogle Scholar
  71. Jiang XJ, Huang X-P, Zhang JP (2010) Effects of CO2 enrichment on photosynthesis, growth and biochemical composition of seagrass Thalassia hemprichii (Ehrenb.) Aschers. J Integr Plant Biol 52:904–913PubMedCrossRefPubMedCentralGoogle Scholar
  72. Keeley JE (1998) CAM photosynthesis in submerged aquatic plants. Bot Rev 64:121–175CrossRefGoogle Scholar
  73. Koch EW, Ackerman JD, Verduin J, van Keulen M (2006) Fluid dynamics in seagrass ecology—from molecules to ecosystems. In: Larkum AWD, Orth RL, Duarte CM (eds) Seagrasses: biology ecology and conservation. Springer, Berlin, pp 193–225Google Scholar
  74. Koch M, Bowes G, Ross C, Zhang X-H (2013) Climate change and ocean acidification effects on seagrasses and marine macroalgae. Clim Change Biol 19:103–132CrossRefGoogle Scholar
  75. Kong F, Li H, Sun P, Zhou Y, Mao Y (2014) De novo assembly and characterization of the trnscriptome of seagrass Zostera marina using Illumina paired-end sequencing. PLoS ONE 9(11):e11245. Scholar
  76. Kong F, Zhou Y, Sun P, Cao M, Li H, Mao Y (2016) Identification of light-harvesting chlorophyll a/b-binding protein genes of Zostera marina L. and their expression under different environmental conditions. J Ocean Univ Chin 15:152–162Google Scholar
  77. Koren K, Brodersen KE, Jakobsen SL, Kühl M (2015) Optical sensor nanoparticles in artificial sediments—a new tool to visualize O2 dynamics around the rhizome and roots of seagrasses. Environ Sci Technol 49:2286–2292PubMedCrossRefGoogle Scholar
  78. Kuo J (1984) Structural aspects of apoplastic fungal hyphae in a marine angiosperm Zostera muelleri Irmisch ex Aschers. (Zosteraceae). Protoplasma 121:1–7CrossRefGoogle Scholar
  79. Kuo J, den Hartog C (2006) Seagrass morphology, anatomy and ultrastructure. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, Berlin, pp 53–87Google Scholar
  80. Larkum AWD, den Hartog C (1989) Evolution and biogeography of seagrasses. In: Larkum AWD, McComb AJ, Shepherd SA (eds) Biology of seagrasses: a treatise on the biology of seagrasses with special reference to the Australian region. Elsevier, Amsterdam, pp 112–156Google Scholar
  81. Larkum AWD, McComb AJ, Shepherd SA (1989a) Biology of seagrasses: a treatise on the biology of seagrasses with special reference to the Australasian region. Elsevier, AmsterdamGoogle Scholar
  82. Larkum AWD, Roberts G, Kuo J, Strother S (1989b) Gaseous movement in seagrasses. In: Larkum AWD, McComb AJ, Shepherd SA (eds) Biology of seagrasses: a treatise on the biology of seagrasses with special reference to the Australian region. Elsevier Pub Co., Amsterdam, pp 686–722, 814 ppGoogle Scholar
  83. Larkum AWD, Ralph ED, Drew EA (2006) Photosynthesis and metabolism at the cellular level. In: Larkum AWD, Orth JJ, Duarte CA (eds) Seagrasses: biology, ecology and their conservation. Springer, BerlinGoogle Scholar
  84. Larkum AWD, Davey PA, Kuo J, Ralph PJ, Raven JA (2017) Carbon-concentrating mechanisms in seagrasses. J Exp Bot. 68:3773–3784.
  85. Lee K-S, Park SR, Kim YK (2007) Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: a review. J Exp Mar Biol Ecol 350:144–175Google Scholar
  86. Lethbridge RC, Borowitzka MA, Benjamin KJ (1988) The development of an artificial, Amphibolis-like seagrass of complex morphology and preliminary data on its colonization by epiphytes. Aquat Bot 31:153–168CrossRefGoogle Scholar
  87. Long MH, Berg P, McGlathery KJ, Zieman JC (2015) Sub-tropical seagrass ecosystem metabolism measured by eddy covariance. Mar Ecol Prog Ser 529:75–90CrossRefGoogle Scholar
  88. MacFarlane JJ, Raven JA (1985) External and internal transport in Lemanea: interactions with the kinetics of ribulose bisphosphate carboxylase. J Exp Bot 36:610–622CrossRefGoogle Scholar
  89. MacFarlane JJ, Raven JA (1989) Quantitative determination of the unstirred layer permeability and kinetic parameters of RUBISCO in Lemanea mamillosa. J Exp Bot 40:321–327CrossRefGoogle Scholar
  90. MacFarlane JJ, Raven JA (1990) C, N and P nutrition of Lemanea mamillosa (Kütz. (Batrachospermales, Rhodophyta) in the Dighty Burn, Angus, UK. Plant Cell Environ 13:1–13CrossRefGoogle Scholar
  91. MacFarlane JJ (1992) Permeability of the cuticle of Vallisneria spiralis to carbon dioxide and oxygen. Aquat Bot 43:129–35Google Scholar
  92. Maberly SC (1996) Diel, episodic and seasonal changes in pH and concentrations of inorganic carbon in a productive lake. Freshw Biol 35:579–598Google Scholar
  93. Marín-Guirao L, Ruiz JM, Sandoval-Gil JM, Bernardeau-Esteller J, Stinco CM, Meléndez-Martínez A (2013) Xanthophyll cycle-related photoprotective mechanism in the Mediterranean seagrasses Posidonia oceanica and Cymodocea nodosa under normal and stressful hypersaline conditions. Aquat Bot 109:14–24CrossRefGoogle Scholar
  94. Mass T, Genin A, Shavut U, Grinstein M, Tchernov D (2010) Flow enhances photosynthesis in marine benthic autotrophs increases the efflux of oxygen from the organism to water. Proc Natl Acad Sci U S A 107:2527–2531PubMedPubMedCentralCrossRefGoogle Scholar
  95. Mazzuca S, Spadafora A, Filadoro D, Vannini C, Marsoni M, Cozza R, Bracale M, Pangaro T, Innocenti AM (2009) Seagrass light acclimation: 2-DE protein analysis in Posidonia leaves grown in chronic low light conditions. J Exp Mar Biol Ecol 374:113–122CrossRefGoogle Scholar
  96. Mazzuca S, Bjork M, Beer S, Felisberto P, Gobert S et al (2013) Establishing research strategies, methodologies and technologies to link genomics and proteomics to seagrass productivity, community metabolism, and ecosystem carbon fluxes. Front Plant Sci 4:38. Scholar
  97. McPherson ML, Zimmerman RC, Hill VJ (2015) Predicting carbon isotope discrimination in eelgrass (Zostera marina L.) from the environmental parameters—light, flow and [DIC]. Limnol Oceanogr 60:1875–1889CrossRefGoogle Scholar
  98. McRoy CP, Goering JJ (1974) Nutrient transfer between the seagrass Zostera marina and its epiphytes. Nature 248:173–174CrossRefGoogle Scholar
  99. Mercado JM, Niell FX, Silva J, Santos R (2003) Use of light and inorganic carbon acquisition by two morphotypes of Zostera noltii Hornem. J Exp Biol Ecol 297:71–84CrossRefGoogle Scholar
  100. Millhouse JV, Strother S (1986) Salt-stimulated bicarbonate-dependent photosynthesis in the marine angiosperm Zostera muelleri. J Exp Bot 37:965–976CrossRefGoogle Scholar
  101. Muramatsu Y, Harada A, Ohwaki Y, Kasahara Y, Takagi S, Fukuhara T (2002) Salt-tolerant ATPase activity in the plasma membrane of the marine angiosperm Zostera marina L. Plant Cell Physiol 43:1137–1145PubMedCrossRefGoogle Scholar
  102. Nobel PS (2005) Physicochemical and environmental plant physiology, 3rd edn. Elsevier Academic Press, Amsterdam, p 567Google Scholar
  103. Olivé I, Vergara JJ, Perez-Llorens JL (2013) Photosynthetic and morphological photoacclimation of the seagrass Cymodocea nodosa to season, depth and leaf position. Mar Biol (Berlin) 160:285–297Google Scholar
  104. Olsen JL, Rouzé P, Verhelst B, Lin Y-C, Bayer T et al (2016) The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature 530:331–335PubMedCrossRefPubMedCentralGoogle Scholar
  105. Pak JY, Fukuhara T, Nitta Y (1995) Discrete subcellular location of membrane-bound ATPase activity in marine angiosperms and marine algae. Planta 196:15–22PubMedCrossRefGoogle Scholar
  106. Pärnik TR, Bil KY, Kolmakov PV, Titlyanov EA (1992) Photosynthesis of the seagrass Thalassodendron ciliatum: leak morphology and carbon metabolism (Chap. 12). In: Atoll research bulletin, vol 376, 14 ppGoogle Scholar
  107. Pedersen O, Binzer T, Borum J (2004) Sulphide intrusion in eelgrass (Zostera marina L.). Plant Cell Environ 27:595–602CrossRefGoogle Scholar
  108. Pernice M, Schliep M, Szabo M, Rasheed M, Bryant C, York P, Chartrand K, Petrou K, Ralph P (2015) Development of a molecular biology tool kit to monitor dredging-related light stress in the seagrass Zostera muelleri ssp. Capricorni in Port Curtis Final ReportGoogle Scholar
  109. Petrou K, Jimenez-Denness I, Chartrand K, McCormack C, Rasheed M, Ralph PJ (2013) Seasonal heterogeneity in the photophysiological response to air exposure in two tropical intertidal seagrass species. Mar Ecol Prog Ser 482:93–106CrossRefGoogle Scholar
  110. Pollard PC (1999) Measuring photosynthetic characteristics of the seagrass Syringodium isoetifolium: implications for in situ productivity estimates. NZ J Mar Freshwat Res 33:173–180CrossRefGoogle Scholar
  111. Price GD, Badger MR (1985) Inhibition by proton buffers of photosynthetic utilization of bicarbonate in Chara corallina. Aust J Biol Sci 12:257–267Google Scholar
  112. Ralph PJ, Polk SM, Moore KA, Orth RJ, Smith WO (2002) Operation of the xanthophyll cycle in the seagrass Zostera marina in response to variable irradiance. J Exp Mar Biol Ecol 271:189–207CrossRefGoogle Scholar
  113. Ralph PJ, Durako MJ, Enriquez S, Collier CJ, Doblin MA (2007) Impact of light limitation on seagrasses. J Exp Mar Biol Ecol 350:176–193CrossRefGoogle Scholar
  114. Raven JA (1984) Energetics and transport in aquatic plants. AR Liss, New York, p 587Google Scholar
  115. Raven JA (1996) Into the voids: the distribution, function, development and maintenance of gas spaces in plants. Ann Bot 78:137–142CrossRefGoogle Scholar
  116. Raven JA, Beardall J (2014) CO2 concentrating mechanisms and environmental change. Aquat Bot 118:24–37CrossRefGoogle Scholar
  117. Raven JA, Beardall J (2016) The ins and outs of CO2. J Exp Bot 67:1–13PubMedCrossRefGoogle Scholar
  118. Raven JA, Hurd CL (2012) Ecophysiology of photosynthesis in macroalgae. Photosynth Res 113:105–112PubMedCrossRefGoogle Scholar
  119. Raven JA, Johnston AM, Kübler JE, Korb R, McInroy SG, Handley LL, Scrimgeour CM, Walker DI, Beardall J, Vanderklift M, Fredriksen S, Dunton KH (2002) Mechanistic interpretation on carbon isotope by marine macroalgae and seagrasses. Funct Plant Biol 29:355–378CrossRefGoogle Scholar
  120. Raven JA, Beardall J, Giordano M (2014) Energy costs of carbon dioxide concentrating mechanisms in aquatic organisms. Photosynth Res 121: 111–124Google Scholar
  121. Reiskind JB, Madsen TV, Ginkel LCv, Bowes G (1997) Evidence that inducible C4-type photosynthesis is a chloroplastic CO2-concentrating mechanism in Hydrilla, a submersed monocot. Plant Cell Environ 20:211–220CrossRefGoogle Scholar
  122. Rheuban JE, Berg P, McGlathery KJ (2014a) Multiple timescale processes drive ecosystem metabolism in eelgrass (Zostera marina) meadows. Mar Ecol Prog Ser 507:1–13CrossRefGoogle Scholar
  123. Rheuban JE, Berg P, McGlathery KJ (2014b) Ecosystem metabolism along a colonization gradient of eelgrass (Zostera marina) measured by eddy correlation. Limnol Oceanogr 59:1376–1387CrossRefGoogle Scholar
  124. Rubio L, Linares-Rueda A, García-Sández M, Fernández JA (2005) Physiological evidence for a sodium-dependent high-affinity phosphate and nitrate at the plasma membrane of leaf and root cells of Zostera marina L. J Exp Bot 56:613–620PubMedCrossRefGoogle Scholar
  125. Rubio L, Belver A, Venema K, García-Sández M, Fernández JA (2011) Evidence for a sodium efflux mechanism in the leaf cells of Zostera marina L. J Mar Biol Ecol 402:56–64CrossRefGoogle Scholar
  126. Rubio L, Garcia D, Garcia-Sanchez MJ, Niell FX, Felle HH, Fernandez JJ (2017) Direct uptake of HCO3 in the marine angiosperm Posidonia marina (L.) Delile driven by a plasma membrane H+ economy. Plant Cell Environ 40:2820–2830Google Scholar
  127. Runcie JW, Gurgel CFD, McDermid KJ (2008) In situ photosynthetic rates of tropical marine macroalgae at their lower depth limit. Eur J Phycol 43:377–388CrossRefGoogle Scholar
  128. Runcie JW, Paulo D, Santos R, Sharon Y, Beer S, Silva J (2009) Photosynthetic responses of Haalophila stipulacea to a light gradient. I. In situ energy partitioning of non-photochemical quenching. Aquat Biol 7:143–52Google Scholar
  129. Saderne V, Fietzak P, Herman PMJ (2013) Extreme variations in pCO2 and pH in a macrophyte meadow of the Baltic Sea in summer: evidence of the effect of photosynthesis and local upwelling. PLoS ONE 8(4):2689. Scholar
  130. Sand-Jensen K (1977) Effect of epiphytes on eelgrass photosynthesis. Aquat Bot 3:55–63CrossRefGoogle Scholar
  131. Schwarz AM, Bjork M, Buluda T, Mtolera M, Beer S (2000) Photosynthetic utilization of carbon and light by two tropical seagrass species as measured in situ. Mar Biol 137:755–761CrossRefGoogle Scholar
  132. Sculthorpe CD (1967) Biology of aquatic vascular plants. Edward Arnold, LondonGoogle Scholar
  133. Semesi IS, Beer S, Björk M (2009) Seagrass photosynthesis controls rates of calcification and photosynthesis of calcareous macroalgae in a tropical seagrass meadow. Mar Ecol Prog Ser 382:41–47CrossRefGoogle Scholar
  134. Sharon Y (2010) Photophysiological adaptations and acclimations of the seagrass Halophila stipulacea to extreme light environments. Tel Aviv UniversityGoogle Scholar
  135. Sharon Y, Levitan O, Spungin D, Berman-Frank I, Beer S (2011) Photoacclimation of the seagrass Halophila stipulacea to the dim irradiance at its 48-meter depth limit. Limnol Oceanogr 56, p 357Google Scholar
  136. Sieburth JM, Thomas CD (1973) Fouling on Eelgrass (Zostera marina L). J Phycol 9:46–50CrossRefGoogle Scholar
  137. Silva J, Barrote I, Costa MM, Albano S, Santos R (2013) Physiological responses of Zostera marina and Cymodocea nodosa to light-limitation stress. PLoS One 8(11):e81058PubMedPubMedCentralCrossRefGoogle Scholar
  138. Smith SA, Beaulieu JM, Donoghue MJ (2010) An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants. Proc Natl Acad Sci U S A 107:5897–5902PubMedPubMedCentralCrossRefGoogle Scholar
  139. Stepien CC (2015) Impacts of geography, taxonomy and functional group on inorganic carbon use patterns in marine macrophytes. J Ecol 103:1372–1383CrossRefGoogle Scholar
  140. Surif MB, Raven JA (1990) Photosynthetic gas exchange under emersed conditions in eulittoral and normally submersed members of the Fucales and the Laminariales interpretation in relation to carbon isotope ratio and nitrogen and water use efficiency. Oecologia (Berlin) 82:68–80Google Scholar
  141. Tansik AL, Fitt WK, Hopkinson BM (2015) External carbonic anhydrase in three Caribbean corals: quantification of activity and role in CO2 uptake. Coral Reefs 34:703–713CrossRefGoogle Scholar
  142. Uku J, Beer S, Björk S (2005) Buffer sensitivity of photosynthetic carbon utilization in eight tropical seagrasses. Mar Biol 147:1085–1090CrossRefGoogle Scholar
  143. Waghmode AP, Joshi GV (1983) Significance of phosphoglycollate phosphatase and 3-phosphoglycerate phosphatase in photosynthetic carbon assimilation in some marine plants [Ceriops, Lumnitzera, Aegiceras, Aeluropus, Halophila]. Photosynthetica 17:193–197Google Scholar
  144. Walker NA, Smith FA, Cathers IR (1980) Bicarbonate assimilation in freshwater charophytes and higher plants. I. Membrane transport of bicarbonate is not proven. J Membr Biol 57:51–58CrossRefGoogle Scholar
  145. Wheeler MCG, Tronconi MA, Drincovich MF, Andreo CS, Flügge U-I, Maurino VG (2005) A comprehensive analysis of the NADP-malic enzyme gene family of Arabidopsis. Plant Physiol 139(1):39–51PubMedCrossRefGoogle Scholar
  146. Willis KJ, McElwain JC (2014) The evolution of plants, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  147. Zimmerman RC, Kohrs DG, Steller DL, Alberte RS (1997) Impacts of CO2 enrichment on productivity and light requirements of eelgrass. Plant Physiol 115:599–607PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Anthony W. D. Larkum
    • 1
    Email author
  • Mathieu Pernice
    • 1
  • Martin Schliep
    • 2
  • Peter Davey
    • 1
  • Milan Szabo
    • 3
  • John A. Raven
    • 4
  • Mads Lichtenberg
    • 5
  • Kasper Elgetti Brodersen
    • 5
  • Peter J. Ralph
    • 1
  1. 1.Climate Change ClusterUniversity of Technology SydneyBroadwayAustralia
  2. 2.Oncotec Pharma Produktion GmbHSaxony-AnhaltGermany
  3. 3.Biological Research CentreSzegedHungary
  4. 4.University of Dundee at the James Hutton InstituteInvergowrie, DundeeUK
  5. 5.Marine Biological Section, Department of BiologyUniversity of CopenhagenHelsingørDenmark

Personalised recommendations