Seagrass Resistance to Light Deprivation: Implications for Resilience

  • Katherine R. O’BrienEmail author
  • Matthew P. Adams
  • Angus J. P. Ferguson
  • Jimena Samper-Villarreal
  • Paul S. Maxwell
  • Mark E. Baird
  • Catherine Collier


Seagrass habitat is strongly constrained by light availability. Decline in benthic light due to anthropogenic activities (e.g. eutrophication, dredging and catchment modification) is a major threat to seagrass ecosystems, both within Australia and internationally. Even in pristine conditions, light available to seagrasses can be highly variable on timescales ranging from seconds to years. This chapter outlines the three primary mechanisms which enable seagrass to adapt to and/or resist temporary light deprivation: (1) consumption of accumulated carbon; (2) reduction in rates of growth and carbon loss; and (3) increased efficiency of radiation capture and usage. The capacity to withstand severe light deprivation ranges from only two weeks for small, colonising seagrass species such as Halophila ovalis , to beyond two years for large, persistent species such as Posidonia sinuosa. This “tolerance time” depends on the magnitude and timing of the light deprivation, current environmental conditions (e.g. temperature and sediment sulphides) as well as preceding conditions. This chapter proposes a simple conceptual model for seagrass resilience to temporary light reduction , combining both resistance (the capacity of seagrass to survive the light deprivation event), and the capacity to recover once the disturbance ends. Data is synthesized for several potential indicators of seagrass resistance to light reduction.



Contribution by CC was funded by the National Environmental Science Program, Tropical Water Quality hub. The concepts presented here arise in part from discussions with numerous colleagues from the Australian Centre for Ecological Analysis and Synthesis (ACEAS) working group on Australian Seagrass Habitats. Contribution by MPA and CC were funded by Great Barrier Reef Foundation grant: Seagrass connectivity, community composition and growth: attributes of a resilient GBR. We thank two anonymous reviewers for their constructive comments.


  1. Abal E, Dennison W (1996) Seagrass depth range and water quality in southern Moreton Bay, Queensland, Australia. Mar Freshw Res 47:763–771CrossRefGoogle Scholar
  2. Abal E, Loneragan N, Bowen P, Perry C, Udy J, Dennison W (1994) Physiological and morphological responses of the seagrass Zostera capricorni Aschers, to light intensity. J Exp Mar Biol Ecol 178:113–129CrossRefGoogle Scholar
  3. Adams MP, Collier CJ, Uthicke S, Ow Y, Langlois L, R OBK (2017) Model fit versus biological relevance: evaluating photosynthesis-temperature models for three tropical seagrass species. Sci Rep 7:3990Google Scholar
  4. Alcoverro T, Manzanera M, Romero J (1998) Seasonal and age-dependent variability of Posidonia oceanica (L.) Delile photosynthetic parameters. J Exp Mar Biol Ecol 230:1–13CrossRefGoogle Scholar
  5. Alcoverro T, Manzanera M, Romero J (2001) Annual metabolic carbon balance of the seagrass Posidonia oceanica: the importance of carbohydrate reserves. Mar Ecol Prog Ser 211:105–116CrossRefGoogle Scholar
  6. Baird ME, Adams MP, Babcock RC, Oubelkheir K, Mongin M, Wild-Allen KA, Skerratt J, Robson BJ, Petrou K, Ralph PJ, O’Brien KR, Carter AB, Jarvis JC, Rasheed MA (2016) A physical representation of seagrass growth for application in a complex shallow-water biogeochemical model. Ecol Model 325:13–27CrossRefGoogle Scholar
  7. Blondeau-Patissier D, Gower JF, Dekker AG, Phinn SR, Brando VE (2014) A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans. Prog Oceanogr 123:123–144CrossRefGoogle Scholar
  8. Brodersen KE, Nielsen DA, Ralph PJ, Kühl M (2015) Oxic microshield and local pH enhancement protects Zostera muelleri from sediment derived hydrogen sulphide. New Phytol 205:1264–1276CrossRefPubMedGoogle Scholar
  9. Brun FG, Hernández I, Vergara JJ, Pérez-Lloréns JL (2003) Growth, carbon allocation and proteolytic activity in the seagrass Zostera noltii shaded by Ulva canopies. Funct Plant Biol 30:551–560CrossRefGoogle Scholar
  10. Brush MJ, Nixon SW (2002) Direct measurements of light attenuation by epiphytes on eelgrass Zostera marina. Mar Ecol Prog Ser 238:73–79CrossRefGoogle Scholar
  11. Burke MK, Dennison WC, Moore KA (1996) Non-structural carbohydrate reserves of eelgrass Zostera marina. Mar Ecol Prog Ser 137:195–201CrossRefGoogle Scholar
  12. Burkholder JM, Tomasko DA, Touchette BW (2007) Seagrasses and eutrophication. J Exp Mar Biol Ecol 350:46–72CrossRefGoogle Scholar
  13. Cambridge M, Chiffings A, Brittan C, Moore L, McCOMB AJ (1986) The loss of seagrass in Cockburn Sound, Western Australia. II. Possible causes of seagrass decline. Aquat Bot 24:269–285CrossRefGoogle Scholar
  14. Cambridge M, How J, Lavery P, Vanderklift M (2007) Retrospective analysis of epiphyte assemblages in relation to seagrass loss in a eutrophic coastal embayment. Mar Ecol Prog Ser 346:97–107Google Scholar
  15. Campbell SJ, McKenzie LJ (2004) Flood related loss and recovery of intertidal seagrass meadows in southern Queensland, Australia. Estuar Coast Shelf Sci 60:477–490CrossRefGoogle Scholar
  16. Campbell SJ, McKenzie LJ, Kerville SP (2006) Photosynthetic responses of seven tropical seagrasses to elevated seawater temperature. J Exp Mar Biol Ecol 330:455–468CrossRefGoogle Scholar
  17. Carruthers T, Walker D (1997) Light climate and energy flow in the seagrass canopy of Amphibolis griffithii (JM Black) den Hartog. Oecologia 109:335–341CrossRefPubMedGoogle Scholar
  18. Chartrand KM, Bryant CV, Carter AB, Ralph PJ, Rasheed MA (2016) Light thresholds to prevent dredging impacts on the Great Barrier Reef seagrass, Zostera muelleri ssp. capricorni. Front Mar Sci 3:106Google Scholar
  19. Connelly RM, Jackson EL, Kendrick GA, Macreadie P, Maxwell PS, O’Brien KR (2018) Seagrass dynamics and resilience. In: Larkum AWD, Ralph PJ, Kendrick GA (eds) Seagrasses of AustraliaGoogle Scholar
  20. Collier C, Waycott M (2009) Drivers of change to seagrass distributions and communities on the Great Barrier Reef: literature review and gaps analysis. Reef and Rainforest Research CentreGoogle Scholar
  21. Collier CJ, Lavery PS, Masini RJ, Ralph PJ (2007) Morphological, growth and meadow characteristics of the seagrass Posidonia sinuosa along a depth-related gradient of light availability. Mar Ecol Prog Ser 337:103–115CrossRefGoogle Scholar
  22. Collier C, Lavery P, Ralph P, Masini R (2008) Physiological characteristics of the seagrass Posidonia sinuosa along a depth-related gradient of light availability. Mar Ecol Prog Ser 353:65–79Google Scholar
  23. Collier CJ, Lavery PS, Ralph PJ, Masini RJ (2009) Shade-induced response and recovery of the seagrass Posidonia sinuosa. J Exp Mar Biol Ecol 370:89–103CrossRefGoogle Scholar
  24. Collier CJ, Uthicke S, Waycott M (2011) Thermal tolerance of two seagrass species at contrasting light levels: implications for future distribution in the Great Barrier Reef. Limnol Oceanogr 56:2200–2210CrossRefGoogle Scholar
  25. Collier C, Waycott M, McKenzie L (2012a) Light thresholds derived from seagrass loss in the coastal zone of the northern Great Barrier Reef, Australia. Ecol Ind 23:211–219CrossRefGoogle Scholar
  26. Collier CJ, Waycott M, Giraldo-Ospina A (2012b) Responses of four Indo-West Pacific seagrass species to shading. Mar Pollut Bull 65:342–354CrossRefPubMedGoogle Scholar
  27. Collier CJ, Adams MP, Langlois L, Waycott M, O’Brien KR, Maxwell PS, Mckenzie L (2016) Thresholds for morphological response to light reduction for four tropical seagrass species. Ecol Indicat 67:358–366Google Scholar
  28. Dennison WC (1987) Effects of light on seagrass photosynthesis, growth and depth distribution. Aquat Bot 27:15–26CrossRefGoogle Scholar
  29. Dennison WC, Abal EG (1999) Moreton Bay study: a scientific basis for the healthy waterways campaign. South East Qld Regional Water Quality Management Strategy TeamGoogle Scholar
  30. Dennison WC, Orth RJ, Moore KA, Stevenson JC, Carter V, Kollar S, Bergstrom PW, Batiuk RA (1993) Assessing water quality with submersed aquatic vegetation. Bioscience 43:86–94CrossRefGoogle Scholar
  31. Devlin MJ, Petus C, Da Silva E, Tracey D, Wolff NH, Waterhouse J, Brodie J (2015) Water quality and river plume monitoring in the Great Barrier Reef: an overview of methods based on ocean colour satellite data. Remote Sens 7:12909–12941CrossRefGoogle Scholar
  32. Drake LA, Dobbs FC, Zimmerman RC (2003) Effects of epiphyte load on optical properties and photosynthetic potential of the seagrasses Thalassia testudinum Banks ex König and Zostera marina L. Limnol Oceanogr 48:456–463CrossRefGoogle Scholar
  33. Duarte CM (1991a) Allometric scaling of seagrass form and productivity. Mar Ecol Prog Ser (Oldendorf) 77:289–300CrossRefGoogle Scholar
  34. Duarte CM (1991b) Seagrass depth limits. Aquat Bot 40:363–377CrossRefGoogle Scholar
  35. Duarte CM (1995) Submerged aquatic vegetation in relation to different nutrient regimes. Ophelia 41:87–112CrossRefGoogle Scholar
  36. Duarte CM, Chiscano CL (1999) Seagrass biomass and production: a reassessment. Aquat Bot 65:159–174CrossRefGoogle Scholar
  37. Durako MJ (2007) Leaf optical properties and photosynthetic leaf absorptances in several Australian seagrasses. Aquat Bot 87:83–89CrossRefGoogle Scholar
  38. Enríquez S, Pantoja-Reyes NI (2005) Form-function analysis of the effect of canopy morphology on leaf self-shading in the seagrass Thalassia testudinum. Oecologia 145:234–242CrossRefGoogle Scholar
  39. Enríquez S, Marbà N, Duarte CM, Van Tussenbroek B, Reyes-Zavala G (2001) Effects of seagrass Thalassia testudinum on sediment redox. Mar Ecol Prog Ser 219:149–158CrossRefGoogle Scholar
  40. Enríquez S, Merino M, Iglesias-Prieto R (2002) Variations in the photosynthetic performance along the leaves of the tropical seagrass Thalassia testudinum. Mar Biol 140:891–900CrossRefGoogle Scholar
  41. Erftemeijer PL, Lewis R III, Roy R (2006) Environmental impacts of dredging on seagrasses: a review. Mar Pollut Bull 52:1553–1572CrossRefPubMedGoogle Scholar
  42. Falkowski PG, Raven JA (2013) Aquatic photosynthesis. Princeton University PressGoogle Scholar
  43. Ferguson AJP, Gruber RK, Orr M, Scanes P (2016) Morphological plasticity in Zostera muelleri across light, sediment and nutrient gradients in Australian temperature coastal lakes. Mar Ecol Prog Ser 556:91–104CrossRefGoogle Scholar
  44. Ferguson, AJP, Scanes P, Potts J, Adams MP, O’Brien KR (2017) Seagrasses in the south-east Australian region—distribution, metabolism, and morphology in response to hydrodynamic, substrate, and water quality stressors. In: Larkum AWD, Ralph PJ, Kendrick GA (eds) Seagrasses of AustraliaGoogle Scholar
  45. Ficek D, Kaczmarek S, Ston-Egiert J, Wozniak B, Majchrowski R, Dera J (2004) Spectra of light absorption by phytoplankton pigments in the Baltic; conclusions to be drawn from a Gaussian analysis of empirical data. Oceanologia 46:533–555Google Scholar
  46. Fourqurean JW, Powell GV, Kenworthy WJ, Zieman JC (1995) The effects of long-term manipulation of nutrient supply on competition between the seagrasses Thalassia testudinum and Halodule wrightii in Florida Bay. Oikos 72:349–358CrossRefGoogle Scholar
  47. Frankovich TA, Fourqurean JW (1997) Seagrass epiphyte loads along a nutrient availability gradient, Florida Bay, USA. Mar Ecol Prog Ser 159:37–50CrossRefGoogle Scholar
  48. Fyfe S (2003) Spatial and temporal variation in spectral reflectance: are seagrass species spectrally distinct? Limnol Oceanogr 48:464–479CrossRefGoogle Scholar
  49. Gallegos CL, Kenworthy WJ, Biber PD, Wolfe BS (2009) Underwater spectral energy distribution and seagrass depth limits along an optical water quality gradient. Smithson Contrib Mar Sci 38:359–367Google Scholar
  50. Gordon D, Grey K, Chase S, Simpson C (1994) Changes to the structure and productivity of a Posidonia sinuosa meadow during and after imposed shading. Aquat Bot 47:265–275CrossRefGoogle Scholar
  51. Grech A, Chartrand-Miller K, Erftemeijer P, Fonseca M, McKenzie L, Rasheed M, Taylor H, Coles R (2012) A comparison of threats, vulnerabilities and management approaches in global seagrass bioregions. Environ Res Lett 7:024006CrossRefGoogle Scholar
  52. Hauxwell J, Cebrián J, Furlong C, Valiela I (2001) Macroalgal canopies contribute to eelgrass (Zostera marina) decline in temperate estuarine ecosystems. Ecology 82:1007–1022CrossRefGoogle Scholar
  53. Hauxwell J, Cebrián J, Valiela I (2003) Eelgrass Zostera marina loss in temperate estuaries: relationship to land-derived nitrogen loads and effect of light limitation imposed by algae. Mar Ecol Prog Ser 247:59–73CrossRefGoogle Scholar
  54. Hedley J, Enríquez S (2010) Optical properties of canopies of the tropical seagrass Thalassia testudinum estimated by a three-dimensional radiative transfer model. Limnol Oceanogr 55:1537–1550CrossRefGoogle Scholar
  55. Hedley J, McMahon K, Fearns P (2014) Seagrass canopy photosynthetic response is a function of canopy density and light environment: a model for Amphibolis griffithii. PLoS ONE, 9(10). Article no. e111454, Public Library of Science.
  56. Hemminga M (1998) The root/rhizome system of seagrasses: an asset and a burden. J Sea Res 39:183–196CrossRefGoogle Scholar
  57. Hillman K, McComb A, Walker D (1995) The distribution, biomass and primary production of the seagrass Halophila ovalis in the Swan/Canning Estuary, Western Australia. Aquat Bot 51:1–54CrossRefGoogle Scholar
  58. Jahnke M, Alcoverro T, Lavery PS, McMahon KM, Procaccini G (2015) Should we sync? Seascape‐level genetic and ecological factors determine seagrass flowering patterns. J EcolGoogle Scholar
  59. Jarvis JC, Moore KA, Kenworthy WJ (2014) Persistence of Zostera marina L. (eelgrass) seeds in the sediment seed bank. J Exp Mar Biol Ecol 459:126–136CrossRefGoogle Scholar
  60. Kahn AE, Durako MJ (2009) Wavelength-specific photosynthetic responses of Halophila johnsonii from marine-influenced versus river-influenced habitats. Aquat Bot 91:245–249CrossRefGoogle Scholar
  61. Kaldy J (2012) Influence of light, temperature and salinity on dissolved organic carbon exudation rates in Zostera marina L. Aquat Biosyst 8:19CrossRefPubMedPubMedCentralGoogle Scholar
  62. Kehoe M, O’Brien K, Grinham A, Rissik D, Ahern K, Maxwell P (2012) Random forest algorithm yields accurate quantitative prediction models of benthic light at intertidal sites affected by toxic Lyngbya majuscula blooms. Harmful AlgaeGoogle Scholar
  63. Kendrick GA, Aylward MJ, Hegge BJ, Cambridge ML, Hillman K, Wyllie A, Lord DA (2002) Changes in seagrass coverage in Cockburn Sound, Western Australia between 1967 and 1999. Aquat Bot 73:75–87CrossRefGoogle Scholar
  64. Kendrick GA, Waycott M, Carruthers TJ, Cambridge ML, Hovey R, Krauss SL, Lavery PS, Les DH, Lowe RJ, Vidal OMI (2012) The central role of dispersal in the maintenance and persistence of seagrass populations. Bioscience 62:56–65CrossRefGoogle Scholar
  65. Kenworthy W, Gallegos C, Costello C, Field D, di Carlo G (2014) Dependence of eelgrass (Zostera marina) light requirements on sediment organic matter in Massachusetts coastal bays: implications for remediation and restoration. Mar Pollut Bull 83:446–457CrossRefPubMedGoogle Scholar
  66. Kilminster K, McMahon K, Waycott M, Kendrick GA, Scanes P, McKenzie L, O’Brien KR, Lyons M, Ferguson A, Maxwell P (2015) Unravelling complexity in seagrass systems for management: Australia as a microcosm. Sci Total Environ 534:97–109CrossRefPubMedGoogle Scholar
  67. Kirk JTO (2011) Light and photosynthesis in aquatic ecosystems. Cambridge University PressGoogle Scholar
  68. Larkum AW, Drew EA, Ralph PJ (2006a) Photosynthesis and metabolism in seagrasses at the cellular level. In: Larkum AWD (ed) Seagrass: biology, ecology and conservation. Springer, pp 323–345Google Scholar
  69. Lavery PS, McMahon K, Mulligan M, Tennyson A (2009) Interactive effects of timing, intensity and duration of experimental shading on Amphibolis griffithii. Mar Ecol Prog Ser 394:21–33CrossRefGoogle Scholar
  70. Lee K-S, Park SR, Kim YK (2007) Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: a review. J Exp Mar Biol Ecol 350:144–175CrossRefGoogle Scholar
  71. Levin S, Xepapadeas T, Crépin A-S, Norberg J, De Zeeuw A, Folke C, Hughes T, Arrow K, Barrett S, Daily G (2012) Social-ecological systems as complex adaptive systems: modeling and policy implications. Environ Dev Econ 1:1–22CrossRefGoogle Scholar
  72. Longstaff BJ, Dennison WC (1999) Seagrass survival during pulsed turbidity events: the effects of light deprivation on the seagrasses Halodule pinifolia and Halophila ovalis. Aquat Bot 65:105–121CrossRefGoogle Scholar
  73. Longstaff BJ, Loneragan NR, O’Donohue MJ, Dennison WC (1999) Effects of light deprivation on the survival and recovery of the seagrass Halophila ovalis (R.Br.) Hook. J Exp Mar Biol Ecol 234:1–27CrossRefGoogle Scholar
  74. Mackey P, Collier CJ, Lavery PS (2007) Effects of experimental reduction of light availability on the seagrass Amphibolis griffithi. Mar Ecol Prog Ser 342:117–126CrossRefGoogle Scholar
  75. Marba N, Duarte CM (1998) Rhizome elongation and seagrass clonal growth. Mar Ecol Prog Ser 174Google Scholar
  76. Masini R, Cary J, Simpson C, McComb A (1995) Effects of light and temperature on the photosynthesis of temperate meadow-forming seagrasses in Western Australia. Aquat Bot 49:239–254CrossRefGoogle Scholar
  77. Maxwell P, Stevens A, Udy J, Savige G (2007) Monitoring of Lyngbya majuscula distribution and the environmental conditions of Moreton Bay South East Queensland Healthy Waterways Partnership. Brisbane, AustraliaGoogle Scholar
  78. Maxwell PS, Pitt KA, Burfeind DD, Olds AD, Babcock RC, Connolly RM (2014) Phenotypic plasticity promotes persistence following severe events: physiological and morphological responses of seagrass to flooding. J Ecol 102:54–64CrossRefGoogle Scholar
  79. Maxwell P, Eklof, van Katwijk MM, O’Brien KR, de la Torre-Castro M, Boström C, Bouma TJ, Krause-jensen D, Unsworth RKF, van Tussenbroek Bl (2017) The fundamental role of ecological feedback mechanisms in seagrass ecosystems – a review. Biol Rev 92(3):1521–1538Google Scholar
  80. McMahon K, Lavery PS (2014) Canopy-scale modifications of the seagrass Amphibolis griffithii in response to and recovery from light reduction. J Exp Mar Biol Ecol 455:38–44CrossRefGoogle Scholar
  81. McMahon K, Lavery PS, Mulligan M (2011) Recovery from the impact of light reduction on the seagrass Amphibolis griffithii, insights for dredging management. Mar Pollut Bull 62:270–283CrossRefPubMedGoogle Scholar
  82. McMahon K, Collier C, Lavery PS (2013) Identifying robust bioindicators of light stress in seagrasses: a meta-analysis. Ecol Ind 30:7–15CrossRefGoogle Scholar
  83. Moore KA (2004) Influence of seagrasses on water quality in shallow regions of the lower Chesapeake Bay. J Coastal Res 162–178Google Scholar
  84. Moore KA, Wetzel RL, Orth RJ (1997) Seasonal pulses of turbidity and their relations to eelgrass (Zostera marina L.) survival in an estuary. J Exp Mar Biol Ecol 215:115–134CrossRefGoogle Scholar
  85. Morel A (1978) Available, usable, and stored radiant energy in relation to marine photosynthesis. Deep Sea Res 25:673–688CrossRefGoogle Scholar
  86. Mvungi EF, Lyimo TJ, Björk M (2012) When Zostera marina is intermixed with Ulva, its photosynthesis is reduced by increased pH and lower light, but not by changes in light quality. Aquat Bot 102:44–49CrossRefGoogle Scholar
  87. Negri AP, Flores F, Mercurio P, Mueller JF, Collier CJ (2015) Lethal and sub-lethal chronic effects of the herbicide diuron on seagrass. Aquat Toxicol 165:73–83CrossRefPubMedGoogle Scholar
  88. Nyström M, Norström AV, Blenckner T, de la Torre-Castro M, Eklöf JS, Folke C, Österblom H, Steneck RS, Thyresson M, Troell M (2012) Confronting feedbacks of degraded marine ecosystems. Ecosystems 15:695–710CrossRefGoogle Scholar
  89. O’Brien KR, Tuazon D, Grinham A, Callaghan DP (2012) Impact of mud deposited by 2011 flood on marine and estuarine habitats in Moreton Bay. Brisbane: Healthy WaterwaysGoogle Scholar
  90. O’Brien KR, Waycott M, Maxwell P, Kendrick GA, Udy JW, Ferguson AJ, Kilminster K, Scanes P, Mckenzie LJ, McMahon K, Adams MP, Samper-Villarreal J, Collier C, Lyons M, Mumby PJ, Radke L, Christianen M, Dennison WC (2017) Seagrass ecosystem trajectory depends on the relative timescales of resistance, recovery and disturbance. Mar Pollut BullGoogle Scholar
  91. Orth RJ, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck KL Jr, Hughes AR, Kendrick GA, Kenworthy WJ, Olyarnik S (2006a) A global crisis for seagrass ecosystems. Bioscience 56:987–996CrossRefGoogle Scholar
  92. Orth RJ, Harwell MC, Inglis GJ (2006b) Ecology of seagrass seeds and seagrass dispersal processes. In Larkum AWD, Orth RJ, Duarte CM (ed) Seagrasses: biology, ecology and conservation. Springer, The Netherlands.Google Scholar
  93. Ow Y, Collier C, Uthicke S (2015) Responses of three tropical seagrass species to CO2 enrichment. Mar Biol 162:1005–1017CrossRefGoogle Scholar
  94. Petus C, Collier C, Devlin M, Rasheed M, McKenna S (2014) Using MODIS data for understanding changes in seagrass meadow health: a case study in the Great Barrier Reef (Australia). Mar Environ Res 98:68–85CrossRefPubMedGoogle Scholar
  95. Preen AR, Lee Long WJ, Coles RG (1995) Flood and cyclone related loss, and partial recovery, of more than 1000 km2 of seagrass in Hervey Bay, Queensland, Australia. Aquat Bot 52:3–17CrossRefGoogle Scholar
  96. Ralph PJ, Tomasko D, Moore K, Seddon S, Macinnis-Ng CM (2006) Human impacts on seagrasses: eutrophication, sedimentation, and contamination. In: Larkum AWD (ed) Seagrasses: biology, ecology and conservation. Springer, pp 567–593Google Scholar
  97. Ralph P, Durako M, Enriquez S, Collier C, Doblin M (2007) Impact of light limitation on seagrasses. J Exp Mar Biol Ecol 350:176–193CrossRefGoogle Scholar
  98. Rasheed MA, McKenna SA, Carter AB, Coles RG (2014) Contrasting recovery of shallow and deep water seagrass communities following climate associated losses in tropical north Queensland, Australia. Mar Pollut Bull 83:491–499CrossRefPubMedGoogle Scholar
  99. Rheuban JE, Berg P, McGlathery KJ (2014) Multiple timescale processes drive ecosystem metabolism in eelgrass (Zostera marina) meadows. Mar Ecol Prog Ser 507:1–13CrossRefGoogle Scholar
  100. Ruiz-Montoya L, Lowe R, Van Niel K, Kendrick G (2012) The role of hydrodynamics on seed dispersal in seagrasses. Limnol Oceanogr 57:1257–1265CrossRefGoogle Scholar
  101. Saunders MI, Leon J, Phinn SR, Callaghan DP, O’Brien KR, Roelfsema CM, Lovelock CE, Lyons MB, Mumby PJ (2013) Coastal retreat and improved water quality mitigate losses of seagrass from sea level rise. Glob Change Biol 19:2569–2583CrossRefGoogle Scholar
  102. Silberstein K, Chiffings A, McComb A (1986) The loss of seagrass in Cockburn Sound, Western Australia. III. The effect of epiphytes on productivity of Posidonia australis Hook. f. Aquat Bot 24:355–371CrossRefGoogle Scholar
  103. Suding KN, Gross KL, Houseman GR (2004) Alternative states and positive feedbacks in restoration ecology. Trends Ecol Evol 19:46–53CrossRefPubMedGoogle Scholar
  104. Unsworth RKF, Collier CJ, Waycott M, McKenzie LJ, Cullen-Unsworth LC (2015) A framework for the resilience of seagrass ecosystems. Mar Pollut Bull 100:34–46CrossRefPubMedGoogle Scholar
  105. van der Heide T, van Nes E, Geerling G, Smolders A, Bouma T, van Katwijk M (2007) Positive feedbacks in Seagrass Ecosystems: implications for success in conservation and restoration. Ecosystems 10:1311–1322CrossRefGoogle Scholar
  106. van Dongen JT, Gupta KJ, Ramírez-Aguilar SJ, Araújo WL, Nunes-Nesi A, Fernie AR (2011) Regulation of respiration in plants: A role for alternative metabolic pathways. J Plant Physiol 168:1434–1443CrossRefPubMedGoogle Scholar
  107. Van Duin EH, Blom G, Los FJ, Maffione R, Zimmerman R, Cerco CF, Dortch M, Best EP (2001) Modeling underwater light climate in relation to sedimentation, resuspension, water quality and autotrophic growth. Hydrobiologia 444:25–42CrossRefGoogle Scholar
  108. Van Katwijk M, Vergeer L, Schmitz G, Roelofs J (1997) Ammonium toxicity in eelgrass Zostera marina. Mar Ecol Prog Ser 157:159–173CrossRefGoogle Scholar
  109. van Katwijk MM, Bos AR, de Jonge VN, Hanssen LSAM, Hermus DCR, de Jong DJ (2009) Guidelines for seagrass restoration: importance of habitat selection and donor population, spreading of risks, and ecosystem engineering effects. Mar Pollut Bull 58:179–188CrossRefPubMedGoogle Scholar
  110. van Katwijk MM, Thorhaug A, Marbà N, Orth RJ, Duarte CM, Kendrick GA, Althuizen IHJ, Balestri E, Bernard G, Cambridge ML, Cunha A, Durance C, Giesen W, Han Q, Hosokawa S, Kiswara W, Komatsu T, Lardicci C, Lee KS, Meinesz A, Nakaoka M, O’Brien KR, Paling EI, Pickerell C, Ransijn AMA, Verduin JJ (2016) Global review of seagrass restoration and the importance of large-scale planting. J Appl Ecol 53:567–578CrossRefGoogle Scholar
  111. Walker DI, McComb AJ (1992) Seagrass degradation in Australian coastal waters. Mar Pollut Bull 25:191–194CrossRefGoogle Scholar
  112. Walker D, Lukatelich R, Bastyan G, McComb A (1989) Effect of boat moorings on seagrass beds near Perth, Western Australia. Aquat Bot 36:69–77CrossRefGoogle Scholar
  113. Wazniak CE, Hall MR, Carruthers TJ, Sturgis B, Dennison WC, Orth RJ (2007) Linking water quality to living resources in a mid-Atlantic lagoon system, USA. Ecol Appl 17:S64–S78CrossRefGoogle Scholar
  114. Waycott M, Duarte CM, Carruthers TJB, Orth RJ, Dennison WC, Olyarnik S, Calladine A, Fourqurean JW, Heck KL, Hughes AR, Kendrick GA, Kenworthy WJ, Short FT, Williams (2009). Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci 106(30):12377–12381Google Scholar
  115. Waycott M, Longstaff BJ, Mellors J (2005) Seagrass population dynamics and water quality in the Great Barrier Reef region: a review and future research direction. Mar Pollut Bull 51(1):343–350Google Scholar
  116. Webster IT, Harris GP (2004) Anthropogenic impacts on the ecosystems of coastal lagoons: modelling fundamental biogeochemical processes and management implications. Mar Freshw Res 55:67–78CrossRefGoogle Scholar
  117. Westphalen G, Collings G, Wear R, Fernandes M, Bryars S, Cheshire A (2004) A review of seagrass loss on the Adelaide metropolitan coastline. South Australian Research and Development InstituteGoogle Scholar
  118. Wooldridge SA (2016) Preventable fine sediment export from the Burdekin River catchment reduces coastal seagrass abundance and increased dugong mortality within the Townsville region of the Great Barrier Reef, Australia. Mar Pollut BullGoogle Scholar
  119. Zimmerman RC (2003) A biooptical model of irradiance distribution and photosynthesis in seagrass canopies. Limnol Oceanogr 48:568–585CrossRefGoogle Scholar
  120. Zimmerman RC (2006) Light and photosynthesis in seagrass meadows. In: Larkum AWD (ed) Seagrasses: biology, ecology and conservation. Springer, pp 303–321Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Katherine R. O’Brien
    • 1
    Email author
  • Matthew P. Adams
    • 1
  • Angus J. P. Ferguson
    • 2
  • Jimena Samper-Villarreal
    • 3
  • Paul S. Maxwell
    • 4
  • Mark E. Baird
    • 5
  • Catherine Collier
    • 6
  1. 1.School of Chemical EngineeringThe University of QueenslandSt LuciaAustralia
  2. 2.NSW Office of Environment and HeritageSydney SouthAustralia
  3. 3.Centro de Investigación en Ciencias del Mar y LimnologíaUniversidad de Costa RicaSan PedroCosta Rica
  4. 4.Monitoring and Research, Healthy Land and WaterBrisbaneAustralia
  5. 5.CSIRO, Oceans and AtmosphereHobartAustralia
  6. 6.Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER)James Cook UniversityCairnsAustralia

Personalised recommendations