Advertisement

Evolution and Biogeography of Seagrasses

  • Anthony W. D. Larkum
  • Michelle Waycott
  • John G. Conran
Chapter

Abstract

Seagrasses are an organismal biological group united by their ability to grow in marine environments. As marine flowering plants they have evolved a combined suite of adaptations multiple times enabling the four known lineages containing species of seagrass to survive, and thrive, in the sea. Unlike many other biological groups of plants however, seagrasses are all derived from a single order of flowering plants, the Alismatales. This order, being derived early in the evolution of the monocotyledons, is comprised predominantly of aquatic plants, of all forms–emergent, submerged, freshwater, estuarine and marine. A review of seagrass fossils suggests that new discoveries of seagrass fossils along with confirmation of some earlier finds lead to a clear signal that some seagrass species had a wider distribution in the past compared with today. The discovery of new fossil sites should be encouraged as this will likely produce important valuable information on the evolution of this group. In general the biogeography of seagrasses suggests that these organisms evolved successfully in the Tethys Sea of the Late Cretaceous. However, the modern division into two groups, temperate and tropical tends to suggest that at some point an ecological separation occurred in both the Northern and Southern Hemispheres. There are a disproportionately large number of temperate seagrass species in southern Australia and there is significant endemism shown in Posidonia, Amphibolis and a unique species of Halophila (H. australis). The use of genetic and genomic techniques has begun to explain these distributions but we can expect a much bigger picture to emerge in the near future.

References

  1. Anderson CL, Janssen T (2009) Monocots. In: Hedges SB, Kumar S (eds) The timetree of life. Oxford University Press, Oxford, pp 203–212Google Scholar
  2. Arber A (1920) Water plants: a study of aquatic angiosperms. Cambridge University Press, Cambridge, 436 ppGoogle Scholar
  3. Ascherson P (1876) Die Geographische Verbreitung der Seegräser. In: Neumayer G (ed) Anleitung zu wissenschaftlichen Beobachtungen auf Reisen, mit besonderer Rücksicht auf die Bedürfnisse der kaiserlichen Marine. Verlag von Robert Oppenheimer, Berlin, pp 359–373Google Scholar
  4. Ascherson P (1906) Die Geographische Verbreitung der Seegräser. In: Neumayer G (ed) “Anleitung zu wissenschaftlichen Beobachtungen auf Reisen, vol 2, 3rd edn. Dr. Max Janecke Verlag Buchhandlung, Hannover, pp 389–413Google Scholar
  5. Ascherson P, Graebner P (1907) Potamogetonaceae. In: Engler A (ed) Das Pflanzenreich, Leipzig, Engelmann, vol 31, pp 1–184Google Scholar
  6. Ashworth AC, Markgraf V (1989) Late Quaternary climatic history of the Chilean Channels based on fossil pollen and beetle analyses, with an analysis of the modern vegetation and pollen rain. J Quat Sci 6:279–291CrossRefGoogle Scholar
  7. Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge, Massachusetts, USA, 464 ppGoogle Scholar
  8. Battley PF, Melville DS, Schuckard R, Ballance PF (2011) Zostera muelleri as a structuring agent of benthic communities in a large intertidal sandflat in New Zealand. J Sea Res 65:19–27CrossRefGoogle Scholar
  9. Beavington-Penney SJ, Racey A (2004) Ecology of extant nummulitids and other larger benthic foraminifera: applications in palaeoenvironmental analysis. Earth Sci Rev 67:219–265CrossRefGoogle Scholar
  10. Beavington-Penney SJ, Wright VP, Woelkerling WJ (2008) Recognising macrophyte-vegetated environments in the rock record: a new criterion using ‘hooked’ forms of crustose coralline red algae. Sed Geol 166:1–9CrossRefGoogle Scholar
  11. Benzecry A, Brack-Hanes SD (2008) A new hydrocharitacean seagrass from the Eocene of Florida. Bot J Linn Soc 157:19–30CrossRefGoogle Scholar
  12. Brasier MD (1975) An outline history of seagrass communities. Paleontology 18:681–702Google Scholar
  13. Brongniart A (1828) Prodrome d’une histoire des végétaux fossiles. Levrault (Paris) 13:52–173Google Scholar
  14. Brongniart A (1849) Végétaux fossiles. In: d’Orbigny C (ed) Dictionnaire universel d’histoire naturelle. Renard, Martinet & Cie, Paris, 13, 52–173Google Scholar
  15. Buchan O (2006) Relationships between large benthic foraminifera and their seagrass habitats, San Salvador, Bahamas. Unpublished M.Sc. thesis, Auburn University. 86 pGoogle Scholar
  16. Burbidge NT (1960) The phytogeography of the Australian region. Aust J Bot 8:75–211CrossRefGoogle Scholar
  17. Bureau E (1886) Études sur une plante phanérogame: Cymodoceites parisiensis de l’ordre des Naïadées, qui vivait dans les mers de l’époque Éocène. Compt Rend Acad Sci 102:191–193Google Scholar
  18. Cambridge ML, Kuo J (1979) Two new species of seagrasses from Australia, Posidonia sinuosa and Posidonia angustifolia (Posidoniaceae). Aquat Bot 6:307–328CrossRefGoogle Scholar
  19. Carruthers TJB, Dennison WC, Kendrick GA, Waycott M, Walker DI, Cambridge ML (2007a) Seagrasses of south-west Australia: a conceptual synthesis of the world’s most diverse and extensive seagrass meadows. J Exp Mar Biol Ecol 350:21–45CrossRefGoogle Scholar
  20. Carruthers TJB, Dennison WC, Kendrick GA, Waycott M, Walker DI, Cambridge ML (2007b) Seagrasses of south–west Australia: a conceptual synthesis of the world’s most diverse and extensive seagrass meadows. J Exp Mar Biol Ecol 350:21–45CrossRefGoogle Scholar
  21. Carruthers TJB, Dennison WC, Longstaff BJ, Waycott M, Abal EG, McKenzie LJ, Lee Long WJ (2002) Seagrass habitats of north-east Australia: models of key processes and controls. Bull Mar Sci 71:1153–1169Google Scholar
  22. Carter AB, McKenna SA, Rasheed MA, McKenzie LJ, Coles RG (2016) Seagrass mapping synthesis: a resource for coastal management in the Great Barrier Reef World Heritage Area. Report to the National Environmental Science Programme. Cairns: Reef and Rainforest Research Centre Limited, Queensland, AustraliaGoogle Scholar
  23. Collinson ME (1983) Palaeofloristic assemblages and palaeoecology of the Lower Oligocene Bembridge Marls, Hamstead Ledge, Isle of Wight. Bot J Linn Soc 86:177–225CrossRefGoogle Scholar
  24. Conran JG, Mildenhall DC, Lee DE, Lindqvist JK, Shepherd C, Beu AG, Bannister JM, Stein JK (2014) Subtropical rainforest vegetation from Cosy Dell, Southland: plant fossil evidence for Late Oligocene terrestrial ecosystems. NZ J Geol Geophys 57:236–252CrossRefGoogle Scholar
  25. Conran JG, Bannister JM, Lee DE, Carpenter RJ, Kennedy EM, Reichgelt T, Fordyce RE (2015a) An update of monocot macrofossil data from New Zealand and Australia. Bot J Linn Soc 178(3):394–420CrossRefGoogle Scholar
  26. Conran JG, Mildenhall DC, Raine JI, Kennedy EM, Lee DE (2015b) The monocot fossil pollen record of New Zealand and its implications for palaeoclimates and environments. Bot J Linn Soc 178:421–440CrossRefGoogle Scholar
  27. Creed JC, Phillips RC, Van Tussenbroek BI (2003) The seagrasses of the Caribbean. In: Green EP, Short FT (eds) World atlas of seagrasses. University of California Press, Berkley, California USA, pp 234–242Google Scholar
  28. Crisci JV, Katinas L, Posadas P (2003) Historical biogeography: an introduction. Harvard University Press, Cambridge, MA, USA, 264 ppGoogle Scholar
  29. Dangeard PJL (1965) Sur deux Chlorococcales marines. Botaniste 48:65–74Google Scholar
  30. den Hartog C (1970) The sea-grasses of the world. Verhandelingen der Nederlandsche Akademie van Wetenschappen, Afdeeling Natuurkunde, Tweede Reeks 59, 1–275Google Scholar
  31. Dixon FS (1972) Paleoecology of an Eocene mudflat deposit (Avon Park Formation, Claibornian) in Florida: Gainesville, Florida. Unpublished M.Sc. thesis, University of Florida, Gainesville, Florida, 44 pGoogle Scholar
  32. Domning D (1981) Sea cows and seagrasses. Paleobiology 7:417–420CrossRefGoogle Scholar
  33. Domning DP (2001) Sirenians, seagrasses, and Cenozoic ecological change in the Caribbean. Palaeogeogr Palaeoclimatol Palaeoecol 166:27–50CrossRefGoogle Scholar
  34. Doyle JA (2012) Molecular and fossil evidence on the origin of angiosperms. Ann Rev Earth Planet Sci 40:301–326CrossRefGoogle Scholar
  35. Duarte CM (2002) The future of seagrass meadows. Environ Conser 29:192–206CrossRefGoogle Scholar
  36. Duarte CM, Bandeira S, Romeiras MM (2012) Systematics and ecology of a new species of seagrass (Thalassodendron, Cymodoceaceae) from southeast African coasts. Novon 22:16–24CrossRefGoogle Scholar
  37. Ebach MC, Murphy DJ, Gonzalez-Orozco CE, Miller JT (2015) A revised area taxonomy of phytogeographical regions within the Australian Bioregionalisation Atlas. Phytotaxa 208:261–277CrossRefGoogle Scholar
  38. Erwin DM, Stockey RA (1989) Permineralized monocotyledons from the middle Eocene Princeton chert (Allenby Formation) of British Columbia: Alismataceae. Can J Bot 67:2636–2645CrossRefGoogle Scholar
  39. Eva AN (1980) Pre-Miocene seagrass communities in the Caribbean. Palaeontology 23:231–236Google Scholar
  40. Fitzgerald EMG, Velez-Juarbe J, Wells RT (2013) Miocene sea cow (Sirenia) from Papua New Guinea sheds light on sirenian evolution in the Indo-Pacific. J Vertbr Paleontol 33:956–963CrossRefGoogle Scholar
  41. Friis EM, Crane PR, Pedersen KR (2011) Early flowers and angiosperm evolution. Cambridge University Press, Cambridge, UK, 585 pGoogle Scholar
  42. Friis EM, Pedersen KR, Crane PR (2000) Fossil floral structures of a basal angiosperm with monocolpate, reticulate-acolumellate pollen from the Early Cretaceous of Portugal. Grana 39:226–239CrossRefGoogle Scholar
  43. Friis EM, Pedersen KR, Crane PR (2004) Araceae from the Early Cretaceous of Portugal: evidence on the emergence of monocotyledons. Proc Nat Acad Sci USA 101:16565–16570PubMedCrossRefGoogle Scholar
  44. Fritel PH (1909) Sur l’attribution au genre Posidónia de quelques Caulinites de l’Éocène du Bassin de Paris. Bull Soc Géol France, Series 4:380–385Google Scholar
  45. Fritel PH (1914) Sur les Zostères du Calcaire grossier et sur l’assimilation au genre Cymodoceites Bureau des prétendues algues du même gisement. Bull. Soc. Géologique de Fr, séries 5, 13, 354–358Google Scholar
  46. Gandolfo MA, Zamaloa M del C, Cúneo NR, Archangelsky A (2009) Potamogetonaceae fossil fruits from the Tertiary of Patagonia, Argentina. Int J Pl Sci 170:419–428Google Scholar
  47. Golovneva LB (1987) Novyi vid roda Haemanthophyllum iz rarytskinskoj svity Korjanskogo nagorja. Botanicheskii Zhurnal 72:1127–1131Google Scholar
  48. Green AJ, Figuerola J, Sánchez MI (2002) Implications of waterbird ecology for the dispersal of aquatic organisms. Acta Oecol 23:177–189CrossRefGoogle Scholar
  49. Green EP, Short FT (2003) World atlas of seagrasses. University of California Press, Berkley, California USA, 298 ppGoogle Scholar
  50. Gregor H-J (1991) Ein neues fossiles Seegras – Posidocea frickhingeri nov. gen. et spec. im Paläogen Oberitaliens (Verona). Zeitschrift Documenta Naturae 65:1–11Google Scholar
  51. Grímsson F, Zetter R, Halbritter H, Grimm GW (2014) Aponogeton pollen from the Cretaceous and Paleogene of North America and West Greenland: Implications for the origin and palaeobiogeography of the genus. Rev Palaeobot Palynol 200:151–187CrossRefGoogle Scholar
  52. Guiry MD (2014) Halochloris P.J.L. Dangeard, 1965: 68. In: Guiry MD, Guiry GM (eds) AlgaeBase. World-wide electronic publication. Galway, Ireland, National University of Ireland. Retrieved 26 Feb 2014. http://www.algaebase.org
  53. Haggard KK, Tiffney BH (1997) The flora of the early Miocene Brandon Lignite, Vermont, USA. VIII. Caldesia (Alismataceae). Am J Bot 84:239–252PubMedCrossRefGoogle Scholar
  54. Harzhauser M (2014) A seagrass-associated early Miocene Indo-Pacific gastropod fauna from South-West India (Kerala). Palaeontographica 302:73–178CrossRefGoogle Scholar
  55. Hayward BW, Grenfell HR, Sandiford A, Shane PR, Morley MS, Alloway BV (2002) Foraminiferal and molluscan evidence for the Holocene marine history of two breached maar lakes, Auckland, New Zealand. New Zealand J Geol Geophys 45:467–479CrossRefGoogle Scholar
  56. Heck KL, McCoy ED (1979) The biogeography of seagrasses: evidence from associated organisms. Proc. Int Symp Mar Biogeogr Evol South Hemisphere 1:109–128Google Scholar
  57. Hertweck KL, Kinney MS, Stuart SA, Maurin O, Mathews S, Chase MW, Gandolfo MA, Pires JC (2015) Phylogenetics, divergence times and diversification from three genomic partitions in monocots. Bot J Linn Soc 178:375–393CrossRefGoogle Scholar
  58. Hill RS (ed) (1994) History of the Australian vegetation: Cretaceous to Recent. Cambridge. Cambridge University Press. Cambridge, UK, 433 pGoogle Scholar
  59. Hooker JJ, Grimes ST, Mattey DP, Collinson ME, Sheldon ND (2009) Refined correlations of the UK late Eocene–early Oligocene Solent Group and timing of its climate history. In: Koeberl C, Montanari A (eds) The Late Eocene earth—hothouse, icehouse, and impacts (GSA Special Papers No. 452), Geol Soc Am, pp 179–195, Boulder, ColoradoGoogle Scholar
  60. Iles WJD, Smith SY, Gandolfo MA, Graham SW (2015) Monocot fossils suitable for molecular dating analyses. Bot J Linn Soc 178:346–374CrossRefGoogle Scholar
  61. Ivany LC, Portell RW, Jones DS (1990) Animal-plant relationships and paleobiogeography of an Eocene seagrass community from Florida. Palaios 5:244–258CrossRefGoogle Scholar
  62. Jacobs SWL, Les DH, Moody ML (2006) New combinations in Australasian Zostera (Zosteraceae). Telopea 11:127–128CrossRefGoogle Scholar
  63. Janssen T, Bremer K (2004) The age of monocot groups inferred from 800 + rbcL sequences. Bot J Linn Soc 146:385–398CrossRefGoogle Scholar
  64. Kendrick GA, Waycott M, Carruthers TJB, Cambridge ML, Hovey R, Krauss SL et al (2012) The central role of dispersal in the maintenance and persistence of seagrass populations. Biosciences 62:56–65CrossRefGoogle Scholar
  65. Kilminster K, McMahon K, Waycott M, Kendrick GA, Scanes P, McKenzie L, O’Brien KR, Lyons M, Ferguson A, Maxwell P, Glasby T, Udy J (2015) Unravelling complexity in seagrass systems for management: Australia as a microcosm. Sci Total Environ 534:97–109PubMedCrossRefPubMedCentralGoogle Scholar
  66. Kirkman H (1997) Seagrasses of Australia, Australia: State of the Environment Technical Paper Series (Estuaries and the Sea). Department of the Environment, Canberra, 36 ppGoogle Scholar
  67. Knox GA (1963) The biogeography and intertidal ecology of the Australian coasts. Oceanogr Mar Biol Ann Rev 1:341–404Google Scholar
  68. Koriba K, Miki S (1931) On Archeozostera from the Izumi Sandstone. Chikyu (The Globe) 15:165–201 [in Japanese]Google Scholar
  69. Koriba K, Miki S (1958) Archeozostera, a new genus from Upper Cretaceous in Japan. Palaeobotanist 7:107–110Google Scholar
  70. Kuo J, Cambridge ML (1984) A taxonomic study of the Posidonia ostenfeldii complex (Posidoniaceae) with description of four new Australian seagrasses. Aquat Bot 20:267–295CrossRefGoogle Scholar
  71. Larkum AWD, West RJ (1983) Stability, depletion and restoration of seagrass beds. Proc Linn NSW 106:201–212Google Scholar
  72. Larkum AWD, den Hartog C (1989) Evolution and biogeography of seagrasses. In: Larkum AWD, McComb AJ, Shepherd S (eds) Biology of seagrasses. A treatise on the biology of seagrasses with special reference to the Australian region. Elsevier, Amsterdam, pp 112–156Google Scholar
  73. Larkum AWD, Orth RJ, Duarte C (2006) Seagrasses: biology, ecology and conservation. Springer, Dordrecht, p 512Google Scholar
  74. Laurent L, Laurent JL (1926) Étude sur une plante fossile des dépôts du tertiaire marin du sud de Célèbes, Cymodocea micheloti (Wat.) Nob. Jaarboek van het Mijnwezen in Nederlandsch. Indie 54:167–190Google Scholar
  75. Lee DE, Lee WG, Mortimer N (2001) Where and why have all the flowers gone? Depletion and turnover in the New Zealand Cenozoic angiosperm flora in relation to palaeogeography and climate. Australian Journal of Botany. 49:341–356Google Scholar
  76. Lee DE, Lindqvist JK, Beu AG, Robinson JH, Ayress MA, Morgans HEG, Stein JK (2014) Geological setting and diverse fauna of a Late Oligocene rocky shore ecosystem, Cosy Dell, Southland. New Zealand J Geol Geophys 57:195–208CrossRefGoogle Scholar
  77. Leonard-Pingel JS (2005) Molluscan taphonomy as a proxy for recognizing fossil seagrass beds. Unpublished M.Sc. thesis, Louisiana State University and Agricultural and Mechanical College, 132 pGoogle Scholar
  78. Les DH, Tippery NP (2013) In time and with water… the systematics of alismatid monocotyledons. In: Wilkin P, Mayo SJ (eds) Early events in monocot evolution. Cambridge University Press, Cambridge, UK, pp 118–164Google Scholar
  79. Les DH, Cleland MA, Waycott M (1997) Phylogenetic studies in alismatidae, II: Evolution of marine angiosperms (seagrasses) and hydrophily. Syst Bot 22:443–463CrossRefGoogle Scholar
  80. Les DH, Crawford DJ, Kimball RT, Moody ML, Landolt E (2003) Biogeography of discontinuously distributed hydrophytes: a molecular appraisal of intercontinental disjunctions. Int J Plant Sci 164:917–932CrossRefGoogle Scholar
  81. Lockhart PJ, Larkum AWD, Becker M, Penny D (2015) We are still learning about the nature of species and their evolutionary relationships. Ann Missouri Bot Gard 11(2014):99.  https://doi.org/10.3417/2012084CrossRefGoogle Scholar
  82. Lumbert SH, den Hartog C, Phillips RC, Olsen FS (1984) The occurrence of fossil seagrasses in the Avon Park Formation (late middle Eocene), Levy County, Florida (U.S.A.). Aquat Bot 20:121–129CrossRefGoogle Scholar
  83. Machin J (1971) Plant microfossils from Tertiary deposits of the Isle of Wight. New Phytol 70:851–872CrossRefGoogle Scholar
  84. McCoy ED, Heck KL (1976) Biogeography of corals, seagrasses, and mangroves: An alternative to the center of origin concept. Syst Zool 25:201–210Google Scholar
  85. McMahon KM, Waycott M (2009) New record for Halophila decipiens Ostenfeld in Kenya based on morphological and molecular evidence. Aquat Bot 91:318–320Google Scholar
  86. McMahon K, van Dijk K-J, Ruiz-Montoya L, Kendrick GA, Krauss SL, Waycott M, Verduin J, Lowe R, Statton J, Brown E, Duarte CM (2014) The movement ecology of seagrasses. Proc Roy Soc B Biol Sci 281:20140878–20140879CrossRefGoogle Scholar
  87. McMillan C, Phillips RC (1979) Differentiation in habitat response among populations of New World seagrass. Aquat Bot 7:185–196CrossRefGoogle Scholar
  88. Mai DH (2000) The Middle and Upper Miocene floras of Meuro and Rauno sequences in the Lusatica region. Part I: waterferns, conifers, monocotyledons. Palaeontographica Abteilung B: Paläophytologie 256:1–68Google Scholar
  89. Marsh H, O’Shea TJ, Reynolds JEI (2011) The ecology and conservation of Sirenia: Dugongs and manatees. Cambridge University Press, Cambridge, U.K., p 536CrossRefGoogle Scholar
  90. Massalongo AB (1850) Schizzo geognostico sulla valle del Progno o torrente d’Illasi, con un saggio sopra la flora primordiale del Monte Bolca. Antonelli, Verona, 77 pGoogle Scholar
  91. Massalongo AB (1851) Sopra le piante fossili dei terreni terziari del Vicentino osservazioni. A Bianchi, Padova, 263 pGoogle Scholar
  92. Massalongo AB (1852) Conspectus florae tertiariae orbis primaevi. A Bianchi, Patavii, 37 pGoogle Scholar
  93. Massalongo AB (1856) Studi Paleontologici. Tipografia di Giuseppe Antonelli, Verona, 55 pGoogle Scholar
  94. Massalongo AB (1859) Syllabus plantarum fossilium hucusque in formationibus tertiariis agri veneti detectarum. Typis A Merlo, Verona, 179 pGoogle Scholar
  95. Massalongo AB, Lotze M (1859) Saggio fotografico di alouni animali e plante fossili dell’agro Veronese (= Specimen photographicum animalum quorundam plantarumque fossilium, agri Veronensis). Vicentini-Franchini, Verona, 101 pGoogle Scholar
  96. Meehan AJ, West RJ (2000) Recovery times for a damaged Posidonia australis bed in south-eastern Australia. Aquat Bot 67:161–167CrossRefGoogle Scholar
  97. Mildenhall DC (1980) New Zealand Late Cretaceous and Cenozoic plant biogeography: a contribution. Palaeogeogr Palaeoclimatol Palaeoecol 31:197–233CrossRefGoogle Scholar
  98. Mukai H (1993) Biogeography of the tropical seagrasses in the Western Pacific. Aust J Mar Freshw Res 44:1–17Google Scholar
  99. Nakano T, Ozawa T (2007) Worldwide phylogeography of limpets of the order Patellogastropoda: molecular, morphological and palaeontological evidence. J Mollusc Stud 73:79–99CrossRefGoogle Scholar
  100. Oishi S (1931) Discovery of Archeozostera and Sigillaria like impressions in Hokkaido. J Geog Tokyo 43:717–719Google Scholar
  101. Oliver WRB (1928) The flora of the Waipaoa Series (later Pliocene) of New Zealand. Trans New Zealand Inst 59:287–303Google Scholar
  102. Ostenfeld CH (1915) On the geographical distribution of the seagrasses. A prelimninary communication. Proc Roy Soc Victoria 27:179–191Google Scholar
  103. Ostenfeld CH (1927a) Meeresgräse 1. Marine Hydrocharitaceae. In: Hanning E, Winkler H (eds) Phlanzenareale I, 35–38 (maps pp 21–25)Google Scholar
  104. Ostenfeld CH (1927b) Meeresgräse II. Marine Potomagetonaceae. In: Hanning E, Winkler H (eds) Phlanzenareale I, 46–50 (maps pp 34–39)Google Scholar
  105. Orth RJ, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck KL, Hughes AR, Kendrick GA, Kenworthy WJ, Olyarnik S, Short FT, Waycott M, Williams SL (2006) A global crisis for seagrass ecosystems. Bioscience 56:987–996CrossRefGoogle Scholar
  106. Parker JH, Gischler E (2015) Modern and relict foraminiferal biofacies from a carbonate ramp, offshore Kuwait, northwest Persian Gulf. Facies 61:10.  https://doi.org/10.1007/s10347-015-0437-5
  107. Pole MS (1993) Early Miocene flora of the Manuherikia Group, New Zealand. 9. Miscellaneous leaves and reproductive structures. J Roy Soc New Zealand 23:345–391CrossRefGoogle Scholar
  108. Raine JI, Mildenhall DC, Kennedy EM (2011) New Zealand fossil spores and pollen: an illustrated catalogue, 4th edn (GNS Science Miscellaneous Series No. 4). Retrieved 20 Apr 2012, updated 5 May 2013. http://www.gns.cri.nz/what/earthhist/fossils/spore_pollen/catalog/index.htm
  109. Randazzo AF, Saroop HC (1976) Sedimentology and paleoecology of Middle and Upper Eocene carbonate shoreline sequences, Crystal River, Florida, USA. Sed Geol 15:259–291CrossRefGoogle Scholar
  110. Raven PH, Axelrod DI (1974) Angiosperm biogeography and past continental movements. Ann Missouri Bot Gard 61:539–673CrossRefGoogle Scholar
  111. Reich S (2014) Gastropod associations as a proxy for seagrass vegetation in a tropical, carbonate setting (San Salvador, Bahamas). Palaois 29:467–482CrossRefGoogle Scholar
  112. Reich S, Di Martino E, Todd JA, Wesselingh FP, Renema W (2015) Indirect paleo-seagrass indicators (IPSIs): a review. Earth Sci Rev 143:161–186CrossRefGoogle Scholar
  113. Reusch TBH (2001a) Fitness-consequences of geitonogamous selfing in a clonal marine angiosperm (Zostera marina). J Evol Biol 14:129–138PubMedCrossRefPubMedCentralGoogle Scholar
  114. Reusch TBH (2001b) New markers—old questions: population genetics of seagrasses. Mar Ecol Prog Ser 211:261–274CrossRefGoogle Scholar
  115. Reuter M, Piller WE, Harzhauser M, Kroh A, Rögl F, Ćorić S (2011) The Quilon Limestone, Kerala Basin, India: an archive for Miocene Indo-Pacific seagrass beds. Lethaia 44(1):76–86CrossRefGoogle Scholar
  116. Reynolds LK, McGlathery KJ, Waycott M (2012) Genetic diversity enhances restoration success by augmenting ecosystem services. PLoS ONE 7:e38397PubMedPubMedCentralCrossRefGoogle Scholar
  117. Riley MG, Stockey RA (2004) Cardstonia tolmanii gen. et sp. nov. (Limnocharitaceae) from the Upper Cretaceous of Alberta, Canada. Int J Plant Sci 165:897–916CrossRefGoogle Scholar
  118. Ross TG, Barrett CF, Soto Gomez M, Lam VK-Y, Henriquez CL, Les DH, Davis JI, Cuenca A, Petersen G, Seberg O et al (2015) Plastid phylogenomics and molecular evolution of Alismatales. Cladistics early online.  https://doi.org/10.1111/cla.12133
  119. Sánchez Botero CA, Oboh-ikuenobe FE, Macphail M (2013) First fossil pollen record of the Northern Hemisphere species Aglaoreidia cyclops Erdtman, 1960 in Australia. Alcheringa 37(3):415–419CrossRefGoogle Scholar
  120. Sculthorpe CD (1967) The biology of aquatic vascular plants. Edward Arnold, London, p 619Google Scholar
  121. Setchell, WA (1915) The law of temperature connected with the distribution of marine algae. Ann Missouri Bot Gar 2:287–285Google Scholar
  122. Setchell WA (1920) Geographical distribution of the marine spermatophytes. Bull Torrey Bot Club 47:563–579CrossRefGoogle Scholar
  123. Setchell WA (1935) Geographical elements of the marine flora of the North Pacific Ocean. Amer Nat 69:560–577CrossRefGoogle Scholar
  124. Short F, Carruthers T, Dennison W, Waycott M (2007) Global seagrass distribution and diversity: a bioregional model. Exp Mar Biol Ecol 350:3–20CrossRefGoogle Scholar
  125. Short F, Moore G, Peyton K (2010) Halophila ovalis in the tropical Atlantic Ocean. Aquat Bot 93:141–146CrossRefGoogle Scholar
  126. Short F, Polidoro B, Livingstone S, Carpenter K, Bandeira S, Bujang J, Calumpong H, Carruthers T, Coles R, Dennison W, Erftemeijer P, Fortes M, Freeman A, Jagtap T, Kamal A, Kendrick G, Kenworthy W, LaNafie Y, Nasution I, Orth R, Prathep A, Sanciangco J, Tussenbroek B, Vergara S, Waycott M, Zieman J (2011) Extinction risk assessment of the world’s seagrass species. Biol Cons 144:1961–1971CrossRefGoogle Scholar
  127. Sille NP, Collinson ME, Kucera M, Hooker JJ (2006) Morphological evolution of Stratiotes through the Paleogene in England: an example of microevolution in flowering plants. Palaios 21(3):272–288CrossRefGoogle Scholar
  128. Smith SY (2013) The fossil record of noncommelinid monocots. In: Wilkin P, Mayo SJ (eds) Early events in monocot evolution. Cambridge University Press, Cambridge, UK, pp 29–59CrossRefGoogle Scholar
  129. Springer MS, Signore AV, Paijmans JLA, Velez-Juarbe J, Domning DP et al (2015) Interordinal gene capture, the phylogenetic position of Steller’s sea cow based on molecular and morphological data, and the macroevolutionary history of Sirenia. Mol Phylogenet Evol 91:178–193PubMedCrossRefGoogle Scholar
  130. Stockey RA (2006) The fossil record of basal monocots. In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG (eds) Monocots: comparative biology and evolution (excluding Poales). Claremont, CA, Rancho Santa Ana Botanic Garden, pp 91–106Google Scholar
  131. The Angiosperm Phylogeny Group (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181:1–20Google Scholar
  132. Teske PR, Beheregaray LB (2009) Evolution of seahorses’ upright posture was linked to Oligocene expansion of seagrass habitats. Biol Lett 5(4):521–523PubMedPubMedCentralCrossRefGoogle Scholar
  133. Thomas BA, Spicer RA (1984) Comparative leaf architectural analysis of Cretaceous radiating angiosperms. In: Spicer RA, Thomas BA (eds) Systematic and taxonomic approaches in palaeobotany. Clarendon Press, Oxford, pp 221–232Google Scholar
  134. Ticli K (2014) Population structure and genetic connectivity of the seagrass Zostera muelleri across its geographic range with an emphasis on South Australia. University of Adelaide, Honours Thesis. Supervisors: Michelle Waycott, Kor-jent van Dijk, Bayden Russell, 45 ppGoogle Scholar
  135. Uchimura M, Faye EJ, Shimada S, Inoue T, Nakamura Y (2008) A reassessment of Halophila species (Hydrocharitaceae) diversity with special reference to Japanese representatives. Bot Mar 51:258–268CrossRefGoogle Scholar
  136. Unabia CRC (2011) The snail Smaragdia bryanae (Neritopsina, Neritidae) is a specialist herbivore of the seagrass Halophila hawaiiana (Alismatidae, Hydrocharitaceae). Invertebr Biol 130(2):100–114CrossRefGoogle Scholar
  137. Unger F (1847) Chloris protogaea. Beiträge zur Flora der Vorwelt. Leipzig, W. Engelmann. 150 pGoogle Scholar
  138. van der Ham RWJM, van Konijnenburg-van Cittert JHA, Indeherberge L (2007) Seagrass foliage from the Maastrichtian type area (Maastrichtian, Danian, NE Belgium, SE Netherlands). Rev Palaeobot Palynol 144(3–4):301–321Google Scholar
  139. van Dijk KJ, van Tussenbroek BI, Jimenez-Duran K, Marquez-Guzman JG, Ouborg J (2009) High levels of gene flow and low population genetic structure related to high dispersal potential of a tropical marine angiosperm. Mar Ecol Prog Ser 390:67–77CrossRefGoogle Scholar
  140. Vélez-Juarbe J (2014) Ghost of seagrasses past: using sirenians as a proxy for historical distribution of seagrasses. Palaeogeogr Palaeoclimatol Palaeoecol 400(1):41–49CrossRefGoogle Scholar
  141. Voight E, Domke W (1955) Thalassocharis bosqueti Debey ex Miquel ein strukturell einhaltenes Seegras aus der Hollandischen Kreide. Mitt Geol StInst Hamb 24:87–102Google Scholar
  142. Walker DI (1991) The effect of sea temperature on seagrasses and algae on the Western Australian coastline. J Royal Soc W Aust 74:71–77Google Scholar
  143. Watelet A (1866) Description des plantes fossiles du Bassin de Paris. Paris, J.-B. Baillère et Fils, 295 pGoogle Scholar
  144. Waycott M (1995) Assessment of genetic variation and clonality in the seagrass Posidonia australis using RAPD and allozyme analysis. Mar Ecol Prog Ser 116:289–295CrossRefGoogle Scholar
  145. Waycott M, McMahon K, Lavery P (2014a) A guide to southern temperate seagrasses. CSIRO Publishing, Melbourne, p 112 ppGoogle Scholar
  146. Waycott M, Freshwater DW, York RA, Robert A, Calladine A, Kenworthy WJ (2002) Evolutionary trends in the seagrass genus Halophila (Thouars): insights from molecular phylogeny. Bull Mar Sci 71:1299–1308Google Scholar
  147. Waycott M, McMahon KM, Mellors JE, Calladine A, Kleine D (2004) A guide to tropical seagrasses of the Indo-West Pacific. James Cook University, Townsville, 72 ppGoogle Scholar
  148. Waycott M, Procaccini G, Les DH, Reusch TBH (2006) Seagrass evolution, ecology and conservation: a genetic perspective. In: Larkum AWD, Orth, RJ Duarte C (eds) Seagrasses: biology, ecology and conservation. Springer, Dordrecht, pp 25–50Google Scholar
  149. Waycott M, McMahon K, Lavery P (2014) A guide to the southern temperate seagrasses. CSIRO Publishing, Canberra, 109 ppGoogle Scholar
  150. Wilde V, Roghi G, Martinetto E (2014) The Pesciara-Monte Postale Fossil-Lagerstätte: 3. Flora. In: Papazzoni CA, Guisberti L, Carnevale G, Roghi G, Bassi D, Zorzin R (eds) Excursion guidebook CBEP 2014-EPPC 2014-Taphos 2014 conferences. The Bolca Fossil-Lagerstätten: a window into the Eocene world (Reconditi della Società Paleontologica Italiana, vol 4). Modena, Società Paleontologica Italiana, pp 65–71Google Scholar
  151. Willette DA, Ambrose RF (2009) The distribution and expansion of the invasive seagrass Halophila stipulacea in Dominica, West Indies, with a preliminary report from St Lucia. Aquat Bot 91:137–142CrossRefGoogle Scholar
  152. Williams SL (1995) Surfgrass (Phyllospadix torreyi) reproduction—reproductive phenology, resource-allocation, and male rarity. Ecology 76:1953–1970CrossRefGoogle Scholar
  153. Worthy TH, Tennyson AJD, Jones C, McNamara JA, Douglas BJ (2007) Miocene waterfowl and other birds from central Otago, New Zealand. J Syst Paleontol 5(1):1–39CrossRefGoogle Scholar
  154. Worthy TH, Tennyson AJD, Hand SJ, Scofield RP (2008) A new species of the diving duck Manuherikia and evidence for geese (Aves: Anatidae: Anserinae) in the St Bathans Fauna (Early Miocene), New Zealand. J Royal Soc New Zealand 38(2):97–114CrossRefGoogle Scholar
  155. Wright CA, Murray JW (1972) Comparisons of modern and palaeogene foraminiferal distributions and their environmental implications. Mem Bur Rech Geol Minier 79:477–484 (Wright, C.A.)Google Scholar
  156. Zhao LC, Collinson ME, Li C-S (2004) Fruits and seeds of Ruppia (Potamogetonaceae) from the Pliocene of Yushe Basin, Shanxi, northern China and their ecological implications. Bot J 145:317–329Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Anthony W. D. Larkum
    • 1
  • Michelle Waycott
    • 2
    • 3
  • John G. Conran
    • 2
  1. 1.Climate Change ClusterUniversity of Technology SydneyBroadwayAustralia
  2. 2.Department of Ecology and Evolutionary Biology, School of Biological SciencesThe University of AdelaideAdelaideAustralia
  3. 3.State Herbarium of South Australia, Department of Environment Water and Natural ResourcesUniversity of AdelaideAdelaideAustralia

Personalised recommendations