IR Playbook pp 141-150 | Cite as

IVC Filters

  • James Chen
  • S. William Stavropoulos


Pulmonary embolism (PE) most often occurs in the setting of lower extremity deep venous thrombosis (DVT) and is a major contributor to morbidity and mortality worldwide. First-line therapy is systemic anticoagulation (AC), but some patients have contraindications. Additionally, treatment may be ineffective at PE prevention or result in undesirable side effects such as spontaneous bleeding. In these patients, inferior vena cava (IVC) filters can be placed to provide mechanical clot filtration to prevent PE in the setting of DVT. First introduced in the 1960s, IVC filters have evolved into low-profile devices, which can be deployed percutaneously. A variety of models are available on the market today, including permanent and optional (retrievable) devices, the latter allowing for retrieval once the period of venothromboembolism (VTE) risk has elapsed. Standard technique for IVC filter retrieval includes the use of endovascular snares; however alternative methods such as endobronchial forceps or laser sheath ablation may be needed in complicated cases. Studies have shown the efficacy of IVC filters for reducing the risk of recurrent symptomatic PE but have also revealed an increased risk for DVT. There has also been increasing recognition of device-related complications, including filter migration, fracture, and penetration through the IVC wall, which can lead to significant clinical sequelae. Consequently, it is essential to place IVC filters in appropriately selected patients and provide vigilant follow-up to remove the filters as soon as clinically indicated.


Inferior vena cava filter Venothromboembolism Deep venous thrombosis Pulmonary embolism Anticoagulation 


  1. 1.
    Heit JA. Epidemiology of venous thromboembolism. Nat Rev Cardiol. 2015;12:464–74.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Beckman MG, Hooper WC, Critchley SE, Ortel TL. Venous thromboembolism: a public health concern. Am J Prev Med. 2010;38:S495–501.CrossRefPubMedGoogle Scholar
  3. 3.
    Kearon C, Akl EA, Ornelas J, Blaivas A, Jimenez D, Bounameaux H, et al. Antithrombotic therapy for VTE disease: CHEST guideline and expert panel report. Chest. 2016;149:315–52.CrossRefPubMedGoogle Scholar
  4. 4.
    Mobin-Uddin K, Callard GM, Bolooki H, Rubinson R, Michie D, Jude JR. Transvenous caval interruption with umbrella filter. N Engl J Med. 1972;286:55–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Wingerd M, Bernhard VM, Maddison F, Towne JB. Comparison of caval filters in the management of venous thromboembolism. Arch Surg. 1978;113:1264–71.CrossRefPubMedGoogle Scholar
  6. 6.
    Greenfield LJ, Zocco J, Wilk J, Schroeder TM, Elkins RC. Clinical experience with the Kim-ray greenfield vena caval filter. Ann Surg. 1977;185:692–8.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Johnson MS, Nemcek AA Jr, Benenati JF, Baumann DS, Dolmatch BL, Kaufman JA, et al. The safety and effectiveness of the retrievable option inferior vena cava filter: a United States prospective multicenter clinical study. J Vasc Interv Radiol. 2010;21:1173–84.CrossRefPubMedGoogle Scholar
  8. 8.
    Le Blanche AF, Ricco JB, Bonneau M, Reynaud P. The optional VenaTech() convertible () vena cava filter: experimental study in sheep. Cardiovasc Intervent Radiol. 2012;35:1181–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Lyon SM, Riojas GE, Uberoi R, Patel J, Lipp ME, Plant GR, et al. Short- and long-term retrievability of the Celect vena cava filter: results from a multi-institutional registry. J Vasc Interv Radiol. 2009;20:1441–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Smouse HB, Rosenthal D, Thuong VH, Knox MF, Dixon RG, Voorhees WD 3rd, et al. Long-term retrieval success rate profile for the Gunther Tulip vena cava filter. J Vasc Interv Radiol. 2009;20:871–7. quiz 8CrossRefPubMedGoogle Scholar
  11. 11.
    Stavropoulos SW, Chen JX, Sing RF, Elmasri F, Silver MJ, Powell A, et al. Analysis of the final DENALI trial data: a prospective, multicenter study of the Denali inferior vena cava filter. J Vasc Interv Radiol. 2016;27:1531–8. e1CrossRefPubMedGoogle Scholar
  12. 12.
    Ziegler JW, Dietrich GJ, Cohen SA, Sterling K, Duncan J, Samotowka M. Proof trial: protection from pulmonary embolism with the OptEase filter. J Vasc Interv Radiol. 2008;19:1165–70.CrossRefPubMedGoogle Scholar
  13. 13.
    Mismetti P, Rivron-Guillot K, Quenet S, Décousus H, Laporte S, Epinat M, et al. A prospective long-term study of 220 patients with a retrievable vena cava filter for secondary prevention of venous thromboembolism. Chest. 2007;131:223–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Caplin DM, Nikolic B, Kalva SP, Ganguli S, Saad WE, Zuckerman DA, Society of Interventional Radiology Standards of Practice Committee. Quality improvement guidelines for the performance of inferior vena cava filter placement for the prevention of pulmonary embolism. J Vasc Interv Radiol. 2011;22:1499–506.PubMedGoogle Scholar
  15. 15.
    Stein PD, Matta F, Hull RD. Increasing use of vena cava filters for prevention of pulmonary embolism. Am J Med. 2011;124:655–61.CrossRefPubMedGoogle Scholar
  16. 16.
    Angel LF, Tapson V, Galgon RE, Restrepo MI, Kaufman J. Systematic review of the use of retrievable inferior vena cava filters. J Vasc Interv Radiol. 2011;22:1522–30. e3CrossRefPubMedGoogle Scholar
  17. 17.
    Vijay K, Hughes JA, Burdette AS, Scorza LB, Singh H, Waybill PN, et al. Fractured bard recovery, G2, and G2 express inferior vena cava filters: incidence, clinical consequences, and outcomes of removal attempts. J Vasc Interv Radiol. 2012;23:188–94.CrossRefPubMedGoogle Scholar
  18. 18.
    Decousus H, Leizorovicz A, Parent F, et al. A clinical trial of vena caval filters in the prevention of pulmonary embolism in patients with proximal deep-vein thrombosis. Prevention du Risque d'Embolie Pulmonaire par Interruption Cave Study Group. N Engl J Med. 1998;338:409–15.CrossRefPubMedGoogle Scholar
  19. 19.
    Group PS. Eight-year follow-up of patients with permanent vena cava filters in the prevention of pulmonary embolism: the PREPIC (prevention du Risque d'Embolie Pulmonaire par interruption cave) randomized study. Circulation. 2005;112:416–22.CrossRefGoogle Scholar
  20. 20.
    Mismetti P, Laporte S, Pellerin O, et al. Effect of a retrievable inferior vena cava filter plus anticoagulation vs anticoagulation alone on risk of recurrent pulmonary embolism: a randomized clinical trial. JAMA. 2015;313:1627–35.CrossRefPubMedGoogle Scholar
  21. 21.
    White RH, Brunson A, Romano PS, Li Z, Wun T. Outcomes after vena cava filter use in noncancer patients with acute venous thromboembolism: a population-based study. Circulation. 2016;133:2018–29.CrossRefPubMedGoogle Scholar
  22. 22.
    Andreoli JM, Lewandowski RJ, Vogelzang RL, Ryu RK. Comparison of complication rates associated with permanent and retrievable inferior vena cava filters: a review of the MAUDE database. J Vasc Interv Radiol. 2014;25:1181–5.CrossRefPubMedGoogle Scholar
  23. 23.
    US Food and Drug Administration: Inferior vena cava (IVC) filters: initial communication. Risk of adverse events with long term use. 2010.Google Scholar
  24. 24.
    US Food and Drug Administration: Removing retrievable inferior vena cava filters: FDA safety Communication. 2014.Google Scholar
  25. 25.
    Sarosiek S, Crowther M, Sloan JM. Indications, complications, and management of inferior vena cava filters: the experience in 952 patients at an academic hospital with a level I trauma center. JAMA Intern Med. 2013;173:513–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Karp JK, Desai KR, Salem R, Ryu RK, Lewandowski RJA. Dedicated inferior vena cava filter service line: How to optimize your practice. Semin Interv Radiol. 2016;33:105–8.CrossRefGoogle Scholar
  27. 27.
    Winters JP, Morris CS, Holmes CE, et al. A multidisciplinary quality improvement program increases the inferior vena cava filter retrieval rate. Vasc Med. 2016;22:51–6.CrossRefPubMedGoogle Scholar
  28. 28.
    Ray CE Jr, Mitchell E, Zipser S, Kao EY, Brown CF, Moneta GL. Outcomes with retrievable inferior vena cava filters: A multicenter study. J Vasc Interv Radiol. 2006;17:1595–604.CrossRefPubMedGoogle Scholar
  29. 29.
    Iliescu B, Haskal ZJ. Advanced techniques for removal of retrievable inferior vena cava filters. Cardiovasc Intervent Radiol. 2012;35:741–50.CrossRefPubMedGoogle Scholar
  30. 30.
    Stavropoulos SW, Ge BH, Mondschein JI, Shlansky-Goldberg RD, Sudheendra D, Trerotola SO. Retrieval of tip-embedded inferior vena cava filters by using the endobronchial forceps technique: Experience at a single institution. Radiology. 2015;275:900–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Kuo WT, Odegaard JI, Rosenberg JK, Hofmann LV. Excimer laser-assisted removal of embedded inferior vena cava filters: A single-center prospective study. Circulation Cardiovascular Interventions. 2013;6:560–6.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • James Chen
    • 1
  • S. William Stavropoulos
    • 1
  1. 1.Division of Interventional RadiologyPerelman School of Medicine at the University of Pennsylvania, Department of RadiologyPhiladelphiaUSA

Personalised recommendations