The Genetic and Microbial Influences in Obesity

Chapter

Abstract

Patients have been told for decades that weight gain and weight loss were the product of a simple energy balance equation. However, despite factoring in both body and organ size and composition, a 20% unexplained difference in resting energy expenditure exists between individuals. New understandings of the role of genetic variation between individuals are shedding light on this complex equation. In addition to host genetics, environmentally driven epigenetic factors appear to exert a powerful influence in the development of obesity. The intestinal microbiome may be a key environmental factor in the pathogenesis of this disease. However, both definitive demonstration of a causative role and what microbial shifts are implicated in both obesity and weight loss require further study. Attempts to modify the microbiota therapeutically are appealing, though results thus far have been clinically limited. The potential role of using diet, prebiotics, or probiotics to change the epigenetic and microbial environment to result in weight loss or weight loss maintenance, before or after surgically induced interventions, are intriguing applications for future obesity therapies.

Keywords

Obesity Genetics Microbiome Fecal transplant Probiotics Bariatric surgery 

References

  1. 1.
    Nelson KM, Weinsier RL, Long CL, Schutz Y. Prediction of resting energy expenditure from fat-free mass and fat mass. Am J Clin Nutr. 1992;56(5):848–56.CrossRefPubMedGoogle Scholar
  2. 2.
    Müller MJ, Bosy-Westphal A, Kutzner D, Heller M. Metabolically active components of fat-free mass and resting energy expenditure in humans: recent lessons from imaging technologies. Obes Rev. 2002;3(2):113–22.CrossRefPubMedGoogle Scholar
  3. 3.
    Fall T, Mendelson M, Speliotes EK. Recent advances in human genetics and epigenetics of adiposity: pathway to precision medicine? Gastroenterology. 2017;152(7):1695–706.CrossRefPubMedGoogle Scholar
  4. 4.
    Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360(15):1509–17.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Fedorenko A, Lishko PV, Kirichok Y. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell. 2012;151(2):400–13.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wang W, Seale P. Control of brown and beige fat development. Nat Rev Mol Cell Biol. Nature Research. 2016;17(11):691–702.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316(5826):889–94.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Smemo S, Tena JJ, Kim K-H, Gamazon ER, Sakabe NJ, Gómez-Marín C, et al. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature. Nature Research. 2014;507(7492):371–5.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Claussnitzer M, Dankel SN, Kim K-H, Quon G, Meuleman W, Haugen C, et al. FTO obesity variant circuitry and adipocyte browning in humans. N Engl J Med. Massachusetts Medical Society. 2015;373(10):895–907.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Dalgaard K, Landgraf K, Heyne S, Lempradl A, Longinotto J, Gossens K, et al. Trim28 haploinsufficiency triggers bi-stable epigenetic obesity. Cell. 2016;164(3):353–64.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. Nature Publishing Group. 2010;464(7285):59–65.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA. National Acad Sciences. 2004;101(44):15718–23.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. Nature Publishing Group. 2009;457(7228):480–4.CrossRefPubMedGoogle Scholar
  14. 14.
    Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009;1(6):6ra14–4.CrossRefGoogle Scholar
  15. 15.
    Chassaing B, Koren O, Goodrich JK, Poole AC, Srinivasan S, Ley RE, et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature. Nature Research. 2015;519(7541):92–6.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Cho I, Yamanishi S, Cox L, Methé BA, Zavadil J, Li K, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. Nature Research. 2012;488(7413):621–6.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102(31):11070–5.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. Nature Publishing Group. 2006;444(7122):1027–31.CrossRefPubMedGoogle Scholar
  19. 19.
    Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341(6150):1241214–4.CrossRefGoogle Scholar
  20. 20.
    Fraher MH, O’Toole PW, Quigley EMM. Techniques used to characterize the gut microbiota: a guide for the clinician. Nat Rev Gastroenterol Hepatol.;Nature Publishing Group. 2012;9(6):312–22.CrossRefPubMedGoogle Scholar
  21. 21.
    Zhang H, DiBaise JK, Zuccolo A, Kudrna D, Braidotti M, Yu Y, et al. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci. National Acad Sciences. 2009;106(7):2365–70.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Graessler J, Qin Y, Zhong H, Zhang J, Licinio J, Wong M-L, et al. Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters. Pharmacogenomics J. 2013;13(6):514–22.CrossRefPubMedGoogle Scholar
  23. 23.
    Damms-Machado A, Mitra S, Schollenberger AE, Kramer KM, Meile T, Königsrainer A, et al. Effects of surgical and dietary weight loss therapy for obesity on gut microbiota composition and nutrient absorption. Biomed Res Int. Hindawi Publishing Corporation. 2015;2015:806248.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ilhan ZE, DiBaise JK, Isern NG, Hoyt DW, Marcus AK, Kang D-W, et al. Distinctive microbiomes and metabolites linked with weight loss after gastric bypass, but not gastric banding. ISME J. 2017;11(9):2047–58.Google Scholar
  25. 25.
    Tremaroli V, Karlsson F, Werling M, Ståhlman M, Kovatcheva-Datchary P, Olbers T, et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 2015;22(2):228–38.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Park S, Bae J-H. Probiotics for weight loss: a systematic review and meta-analysis. Nutr Res. 2015;35(7):566–75.CrossRefPubMedGoogle Scholar
  27. 27.
    Zhang Q, Wu Y, Fei X. Effect of probiotics on body weight and body-mass index: a systematic review and meta-analysis of randomized, controlled trials. Int J Food Sci Nutr. 2015;67(5):571–80.CrossRefPubMedGoogle Scholar
  28. 28.
    Sharafedtinov KK, Plotnikova OA, Alexeeva RI, Sentsova TB, Songisepp E, Stsepetova J, et al. Hypocaloric diet supplemented with probiotic cheese improves body mass index and blood pressure indices of obese hypertensive patients – a randomized double-blind placebo-controlled pilot study. Nutr J. BioMed Central. 2013;12(1):138.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Takahashi S, Anzawa D, Takami K, Ishizuka A, Mawatari T, Kamikado K, et al. Effect of Bifidobacterium animalis ssp. lactis GCL2505 on visceral fat accumulation in healthy Japanese adults: a randomized controlled trial. Biosci Microbiota Food Health. BMFH Press. 2016;35(4):163–71.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Sanchez M, Darimont C, Drapeau V, Emady-Azar S, Lepage M, Rezzonico E, et al. Effect of Lactobacillus rhamnosus CGMCC1.3724 supplementation on weight loss and maintenance in obese men and women. BJN. Cambridge University Press. 2014;111(8)):1507–19.CrossRefGoogle Scholar
  31. 31.
    Kadooka Y, Sato M, Ogawa A, Miyoshi M, Uenishi H, Ogawa H, et al. Effect of Lactobacillus gasseri SBT2055 in fermented milk on abdominal adiposity in adults in a randomised controlled trial. BJN. Cambridge University Press. 2013;110(9):1696–703.CrossRefGoogle Scholar
  32. 32.
    Woodard GA, Encarnacion B, Downey JR, Peraza J, Chong K, Hernandez-Boussard T, et al. Probiotics improve outcomes after roux-en-Y gastric bypass surgery: a prospective randomized trial. J Gastrointest Surg. Springer-Verlag. 2009;13(7):1198–204.CrossRefPubMedGoogle Scholar
  33. 33.
    Dewulf EM, Cani PD, Claus SP, Fuentes S, Puylaert PGB, Neyrinck AM, et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut. BMJ Publishing Group. 2013;62(8):1112–21.CrossRefPubMedGoogle Scholar
  34. 34.
    Vrieze A, Van Nood E, Holleman F, Salojärvi J, Kootte RS, Bartelsman JFWM, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. Elsevier. 2012;143(4):913–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Gastroenterology and HepatologyStanford University School of MedicineStanfordUSA
  2. 2.Department of Bariatric and Minimally Invasive Surgery, Stanford University School of Medicine, Department of SurgeryStanford UniversityStanfordUSA

Personalised recommendations