Advertisement

Solving Time-Consuming Global Optimization Problems with Globalizer Software System

  • Alexander SysoyevEmail author
  • Konstantin Barkalov
  • Vladislav Sovrasov
  • Ilya Lebedev
  • Victor Gergel
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 793)

Abstract

In this paper, we describe the Globalizer software system for solving global optimization problems. The system implements an approach to solving the global optimization problems using the block multistage scheme of the dimension reduction, which combines the use of Peano curve type evolvents and the multistage reduction scheme. The scheme allows an efficient parallelization of the computations and increasing the number of processors employed in the parallel solving of the global optimization problems many times.

Keywords

Multidimensional multiextremal optimization Global search algorithms Parallel computations Dimension reduction Block multistage dimension reduction scheme 

Notes

Acknowledgements

This research was supported by the Russian Science Foundation, project No 16-11-10150 “Novel efficient methods and software tools for the time consuming decision making problems with using supercomputers of superior performance”.

References

  1. 1.
    Pintér, J.D.: Global Optimization in Action (Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications). Kluwer Academic Publishers, Dordrecht (1996)CrossRefzbMATHGoogle Scholar
  2. 2.
    Kearfott, R.B.: Globsol user guide. Optim. Methods Softw. 24, 687–708 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Lin, Y., Schrage, L.: The global solver in the LINDO API. Optim. Methods Softw. 24, 657–668 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Egorov, I.N., Kretinin, G.V., Leshchenko, I.A., Kuptzov, S.V.: IOSO optimization toolkit - novel software to create better design. In: 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Atlanta, Georgia (2002)Google Scholar
  5. 5.
    Venkataraman, P.: Applied optimization with MATLAB programming. Wiley, Hoboken (2009)Google Scholar
  6. 6.
    Holmström, K., Edvall, M.M.: The TOMLAB optimization environment. In: Modeling Languages in Mathematical Optimization, vol 88, pp. 369–376. Springer, Boston (2004).  https://doi.org/10.1007/978-1-4613-0215-5_19
  7. 7.
    Sahinidis, N.V.: BARON: a general purpose global optimization software package. J. Glob. Optim. 8(2), 201–205 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Bussieck, M.R., Meeraus, A.: General algebraic modeling system (GAMS). In: Kallrath, J. (ed.) Modeling Languages in Mathematical Optimization. Applied Optimization, vol 88, pp. 137–157. Springer, Boston (2004).  https://doi.org/10.1007/978-1-4613-0215-5_8
  9. 9.
    Mullen, K.M.: Continuous global optimization in R. J. Stat. Softw. 60(6) (2014)Google Scholar
  10. 10.
    Mongeau, M., Karsenty, H., Rouzé, V., Hiriart-Urruty, J.B.: Comparison of public-domain software for black box global optimization. Optim. Methods Softw. 13(3), 203–226 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Pintér, J.D.: Software development for global optimization. In: Pardalos, P.M., Coleman, T.F. (eds.), Lectures on Global Optimization, Fields Institute Communications, vol. 55, pp. 183–204 (2009)Google Scholar
  12. 12.
    Rios, L.M., Sahinidis, N.V.: Derivative-free optimization: a review of algorithms and comparison of software implementations. J. Global Optim. 56(3), 1247–1293 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Liberti, L.: Writing global optimization software. In: Global Optimization: From Theory to Implementation, vol. 84, pp. 211–262. Springer, Boston (2006).  https://doi.org/10.1007/0-387-30528-9_8
  14. 14.
    Strongin, R.G.: Numerical Methods in Multiextremal Problems (Information-Statistical Algorithms). Nauka (In Russian), Moscow (1978)zbMATHGoogle Scholar
  15. 15.
    Strongin, R.G., Gergel, V.P., Grishagin, V.A., Barkalov, K.A.: Parallel Computations for Global Optimization Problems. Moscow State University (In Russian), Moscow (2013)Google Scholar
  16. 16.
    Strongin, R.G., Sergeyev, Ya.D.: Global Optimization with Non-convex Constraints: Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000)Google Scholar
  17. 17.
    Gergel, V.P.: A software system for multiextremal optimization. Eur. J. Oper. Res. 65(3), 305–313 (1993)CrossRefzbMATHGoogle Scholar
  18. 18.
    Barkalov, K.A., Gergel, V.P.: Multilevel scheme of dimensionality reduction for parallel global search algorithms. In: Proceedings of the 1st International Conference on Engineering and Applied Sciences Optimization, pp. 2111–2124 (2014)Google Scholar
  19. 19.
    Sergeyev, Ya.D., Strongin, R.G., Lera, D.: Introduction to Global Optimization Exploiting Space-Filling Curves. Springer, New York (2013)Google Scholar
  20. 20.
    Barkalov, K., Gergel, V.: Parallel global optimization on GPU. J. Global Optim. 66(1), 3–20 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Barkalov, K., Gergel, V., Lebedev, I.: Use of Xeon Phi Coprocessor for Solving Global Optimization Problems. In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp. 307–318. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21909-7_31 CrossRefGoogle Scholar
  22. 22.
    Gergel, V.P., Grishagin, V.A., Gergel, A.V.: Adaptive nested optimization scheme for multidimensional global search. J. Global Optim. 66(1), 1–17 (2015)zbMATHMathSciNetGoogle Scholar
  23. 23.
    Gergel, V., Lebedev, I.: Heterogeneous parallel computations for solving global optimization problems. Procedia Comput. Sci. 66, 53–62 (2015)CrossRefGoogle Scholar
  24. 24.
    Sergeyev, Y.D.: An information global optimization algorithm with local tuning. SIAM J. Optim. 5(4), 858–870 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Sergeyev, Y.D.: Multidimensional global optimization using the first derivatives. Comput. Math. Math. Phys. 39(5), 743–752 (1999)zbMATHMathSciNetGoogle Scholar
  26. 26.
    Sergeyev, Y.D., Grishagin, V.A.: A parallel method for finding the global minimum of univariate functions. J. Optim. Theor. Appl. 80(3), 513–536 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Sergeyev, Y.D., Grishagin, V.A.: Parallel asynchronous global search and the nested optimization scheme. J. Comput. Anal. Appl. 3(2), 123–145 (2001)zbMATHMathSciNetGoogle Scholar
  28. 28.
    Balandin, D.V., Kogan, M.M.: Pareto-optimal generalized H2-control and vibration isolation problems. Autom. Remote Control (2017). (in press)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alexander Sysoyev
    • 1
    Email author
  • Konstantin Barkalov
    • 1
  • Vladislav Sovrasov
    • 1
  • Ilya Lebedev
    • 1
  • Victor Gergel
    • 1
  1. 1.Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia

Personalised recommendations