Advertisement

Efficiency Analysis of Intel and AMD x86_64 Architectures for Ab Initio Calculations: A Case Study of VASP

  • Vladimir StegailovEmail author
  • Vyacheslav Vecher
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 793)

Abstract

Nowadays, the wide spectrum of Intel Xeon processors is available. The new Zen CPU architecture developed by AMD has extended the number of options for x86_64 HPC hardware. This large number of options makes the optimal CPU choice for HPC systems not a straightforward procedure. Such a co-design procedure should follow the requests from the end-users community. Modern computational materials science studies are among the major consumers of HPC resources worldwide. The VASP code is perhaps the most popular tool for these research. In this work, we discuss the benchmark metric and results based on a VASP test model that give us the possibility to compare different CPUs and to select best options with respect to time-to-solution and energy-to-solution criteria.

Keywords

Multicore VASP Memory wall Broadwell Zen 

Notes

Acknowledgments

The authors are grateful to Dr. Maciej Cytowski and Dr. Jacek Peichota (ICM, University of Warsaw) for the data on the VASP benchmark [22].

The authors acknowledge Joint Supercomputer Centre of Russian Academy of Sciences (http://www.jscc.ru) and Shared Resource Center “Far Eastern Computing Resource” IACP FEB RAS (http://cc.dvo.ru) for the access to the supercomputers MVS10P, MVS1P5 and IRUS17.

The work was supported by the grant No. 14-50-00124 of the Russian Science Foundation. A part of the equipment used in this work was purchased with financial support of HSE and using the President of Russian Federation grant for young researchers MD-9451.2016.8.

References

  1. 1.
    Kresse, G., Hafner, J.: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993). http://link.aps.org/doi/10.1103/PhysRevB.47.558
  2. 2.
    Kresse, G., Hafner, J.: Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994). http://link.aps.org/doi/10.1103/PhysRevB.49.14251
  3. 3.
    Kresse, G., Furthmuller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996). http://www.sciencedirect.com/science/article/pii/0927025696000080
  4. 4.
    Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). http://link.aps.org/doi/10.1103/PhysRevB.54.11169
  5. 5.
    Bethune, I.: Ab initio molecular dynamics. Introduction to Molecular Dynamics on ARCHER (2015). https://www.archer.ac.uk/training/course-material/2015/06/MolDy_Strath/AbInitioMD.pdf
  6. 6.
    Hutchinson, M.: VASP on GPUs. When and how. GPU technology theater, SC 2015 (2015). http://images.nvidia.com/events/sc15/pdfs/SC5107-vasp-gpus.pdf
  7. 7.
    Zhao, Z., Marsman, M.: Estimating the performance impact of the MCDRAM on KNL using dual-socket Ivy Bridge nodes on Cray XC30. In: Proceedings of the Cray User Group – 2016 (2016). https://cug.org/proceedings/cug2016_proceedings/includes/files/pap111.pdf
  8. 8.
    Kogge, P., Shalf, J.: Exascale computing trends: adjusting to the “new normal” for computer architecture. Comput. Sci. Eng. 15(6), 16–26 (2013).  https://doi.org/10.1109/MCSE.2013.95
  9. 9.
    Burtscher, M., Kim, B.D., Diamond, J., McCalpin, J., Koesterke, L., Browne, J.: Perfexpert: An easy-to-use performance diagnosis tool for HPC applications. In: Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2010, pp. 1–11. IEEE Computer Society, Washington, DC, USA (2010). https://doi.org/10.1109/SC.2010.41
  10. 10.
    Rane, A., Browne, J.: Enhancing performance optimization of multicore/multichip nodes with data structure metrics. ACM Trans. Parallel Comput. 1(1), 3:1–3:20 (2014). http://doi.acm.org/10.1145/2588788
  11. 11.
    Stanisic, L., Mello Schnorr, L.C., Degomme, A., Heinrich, F.C., Legrand, A., Videau, B.: Characterizing the performance of modern architectures through opaque benchmarks: pitfalls learned the hard way. In: IPDPS 2017–31st IEEE International Parallel & Distributed Processing Symposium (RepPar workshop), Orlando, USA (2017). https://hal.inria.fr/hal-01470399
  12. 12.
    Kutzner, C., Páll, S., Fechner, M., Esztermann, A., de Groot, B.L., Grubmüller, H.: Best bang for your buck: GPU nodes for GROMACS biomolecular simulations. J. Comput. Chem. 36(26), 1990–2008 (2015).  https://doi.org/10.1002/jcc.24030
  13. 13.
    Corsetti, F.: Performance analysis of electronic structure codes on HPC systems: a case study of SIESTA. PLOS One 9(4), 1–8 (2014).  https://doi.org/10.1371/journal.pone.0095390
  14. 14.
    Stegailov, V.V., Orekhov, N.D., Smirnov, G.S.: HPC hardware efficiency for quantum and classical molecular dynamics. In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp. 469–473. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21909-7_45 CrossRefGoogle Scholar
  15. 15.
    Hoefler, T., Belli, R.: Scientific benchmarking of parallel computing systems: twelve ways to tell the masses when reporting performance results. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2015, pp. 73:1–73:12. ACM, New York (2015).  https://doi.org/10.1145/2807591.2807644
  16. 16.
    Scogland, T., Azose, J., Rohr, D., Rivoire, S., Bates, N., Hackenberg, D.: Node variability in large-scale power measurements: perspectives from the Green500, Top500 and EEHPCWG. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2015, pp. 74:1–74:11. ACM, New York (2015). http://doi.acm.org/10.1145/2807591.2807653
  17. 17.
    Calore, E., Schifano, S.F., Tripiccione, R.: Energy-performance tradeoffs for HPC applications on low power processors. In: Hunold, S., Costan, A., Giménez, D., Iosup, A., Ricci, L., Gómez Requena, M.E., Scarano, V., Varbanescu, A.L., Scott, S.L., Lankes, S., Weidendorfer, J., Alexander, M. (eds.) Euro-Par 2015. LNCS, vol. 9523, pp. 737–748. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-27308-2_59 CrossRefGoogle Scholar
  18. 18.
    Rojek, K., Ilic, A., Wyrzykowski, R., Sousa, L.: Energy-aware mechanism for stencil-based MPDATA algorithm with constraints. In: Concurrency and Computation: Practice and Experience, p. e4016-n/a (2016).  https://doi.org/10.1002/cpe.4016. Cpe.4016
  19. 19.
    Nikolskiy, V., Stegailov, V.: Floating-point performance of ARM cores and their efficiency in classical molecular dynamics. J. Phys. Conf. Ser. 681(1), 012049 (2016). http://stacks.iop.org/1742-6596/681/i=1/a=012049
  20. 20.
    Nikolskiy, V.P., Stegailov, V.V., Vecher, V.S.: Efficiency of the Tegra K1 and X1 systems-on-chip for classical molecular dynamics. In: 2016 International Conference on High Performance Computing Simulation (HPCS), pp. 682–689 (2016).  https://doi.org/10.1109/HPCSim.2016.7568401
  21. 21.
    Vecher, V., Nikolskii, V., Stegailov, V.: GPU-accelerated molecular dynamics: energy consumption and performance. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2016. CCIS, vol. 687, pp. 78–90. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-55669-7_7 CrossRefGoogle Scholar
  22. 22.
    Cytowski, M.: Best Practice Guide – IBM Power 775, PRACE, November 2013. http://www.prace-ri.eu/IMG/pdf/Best-Practice-Guide-IBM-Power-775.pdf

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Joint Institute for High Temperatures of RASMoscowRussia
  2. 2.Moscow Institute of Physics and Technology (State University)DolgoprudnyRussia
  3. 3.National Research University Higher School of EconomicsMoscowRussia

Personalised recommendations