ALADIN: A New Approach for Drug–Target Interaction Prediction

  • Krisztian Buza
  • Ladislav Peska
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10535)


Due to its pharmaceutical applications, one of the most prominent machine learning challenges in bioinformatics is the prediction of drug–target interactions. State-of-the-art approaches are based on various techniques, such as matrix factorization, restricted Boltzmann machines, network-based inference and bipartite local models (BLM). In this paper, we extend BLM by the incorporation of a hubness-aware regression technique coupled with an enhanced representation of drugs and targets in a multi-modal similarity space. Additionally, we propose to build a projection-based ensemble. Our Open image in new window technique (ALADIN) is evaluated on publicly available real-world drug–target interaction datasets. The results show that our approach statistically significantly outperforms BLM-NII, a recent version of BLM, as well as NetLapRLS and WNN-GIP.

Code related to this chapter is available at:

Data related to this chapter are available at:

Supplementary material is available at:


Drug–target interaction prediction Bipartite local models ALADIN 



Ladislav Peska was supported by the Charles University grant P46.


  1. 1.
    Barabási, A.L., Gulbahce, N., Loscalzo, J.: Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12(1), 56–68 (2011)CrossRefGoogle Scholar
  2. 2.
    Besemann, C., Denton, A., Yekkirala, A.: Differential association rule mining for the study of protein-protein interaction networks. In: 4th International Conference on Data Mining in Bioinformatics, pp. 72–80. Springer, Heidelberg (2004).
  3. 3.
    Biau, G., Cérou, F., Guyader, A.: On the rate of convergence of the bagged nearest neighbor estimate. J. Mach. Learn. Res. 11, 687–712 (2010)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bleakley, K., Yamanishi, Y.: Supervised prediction of drug-target interactions using bipartite local models. Bioinformatics 25(18), 2397–2403 (2009)CrossRefGoogle Scholar
  5. 5.
    Bolgar, B., Antal, P.: Bayesian matrix factorization with non-random missing data using informative Gaussian process priors and soft evidences. J. Mach. Learn. Res. 52, 25–36 (2016)Google Scholar
  6. 6.
    Buza, K., Nanopoulos, A., Nagy, G.: Nearest neighbor regression in the presence of bad hubs. Knowl.-Based Syst. 86, 250–260 (2015)CrossRefGoogle Scholar
  7. 7.
    Cellier, P., Charnois, T., Plantevit, M.: Sequential patterns to discover and characterise biological relations. In: Gelbukh, A. (ed.) CICLing 2010. LNCS, vol. 6008, pp. 537–548. Springer, Heidelberg (2010). CrossRefGoogle Scholar
  8. 8.
    Chen, X., Liu, M.X., Yan, G.Y.: Drug-target interaction prediction by random walk on the heterogeneous network. Mol. BioSyst. 8(7), 1970–1978 (2012)CrossRefGoogle Scholar
  9. 9.
    Cheng, A.C., Coleman, R.G., Smyth, K.T., Cao, Q., Soulard, P., Caffrey, D.R., Salzberg, A.C., Huang, E.S.: Structure-based maximal affinity model predicts small-molecule druggability. Nat. Biotechnol. 25(1), 71–75 (2007)CrossRefGoogle Scholar
  10. 10.
    Cheng, F., Liu, C., Jiang, J., Lu, W., Li, W., Liu, G., Zhou, W., Huang, J., Tang, Y.: Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput. Biol. 8(5), e1002503 (2012)CrossRefGoogle Scholar
  11. 11.
    Davis, J., Santos Costa, V., Ray, S., Page, D.: An integrated approach to feature invention and model construction for drug activity prediction. In: Proceedings of the 24th International Conference on Machine Learning, pp. 217–224 (2007)Google Scholar
  12. 12.
    Davis, M.I., Hunt, J.P., Herrgard, S., Ciceri, P., Wodicka, L.M., Pallares, G., Hocker, M., Treiber, D.K., Zarrinkar, P.P.: Comprehensive analysis of kinase inhibitor selectivity. Nat. Biotechnol. 29(11), 1046–1051 (2011)CrossRefGoogle Scholar
  13. 13.
    Fayruzov, T., De Cock, M., Cornelis, C., Hoste, V.: Linguistic feature analysis for protein interaction extraction. BMC Bioinform. 10(1), 374 (2009)CrossRefGoogle Scholar
  14. 14.
    Gönen, M.: Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization. Bioinformatics 28(18), 2304–2310 (2012)CrossRefGoogle Scholar
  15. 15.
    Halperin, I., Ma, B., Wolfson, H., Nussinov, R.: Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins: Struct. Func. Bioinform. 47(4), 409–443 (2002)CrossRefGoogle Scholar
  16. 16.
    Hattori, M., Okuno, Y., Goto, S., Kanehisa, M.: Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways. J. Am. Chem. Soc. 125(39), 11853–11865 (2003)CrossRefGoogle Scholar
  17. 17.
    Morgan, S., Grootendorst, P., Lexchin, J., Cunningham, C., Greyson, D.: The cost of drug development: a systematic review. Health Policy 100(1), 4–17 (2011)CrossRefGoogle Scholar
  18. 18.
    Hu, C., Jain, G., Zhang, P., Schmidt, C., Gomadam, P., Gorka, T.: Data-driven method based on particle swarm optimization and k-nearest neighbor regression for estimating capacity of lithium-ion battery. Appl. Energy 129, 49–55 (2014)CrossRefGoogle Scholar
  19. 19.
    Jamali, A.A., Ferdousi, R., Razzaghi, S., Li, J., Safdari, R., Ebrahimie, E.: Drugminer: comparative analysis of machine learning algorithms for prediction of potential druggable proteins. Drug Discov. Today 21(5), 718–724 (2016)CrossRefGoogle Scholar
  20. 20.
    Kaminskas, M., Bridge, D., Foping, F., Roche, D.: Product-seeded and basket-seeded recommendations for small-scale retailers. J. Data Semant. 6, 1–12 (2016). Google Scholar
  21. 21.
    Keiser, M.J., Roth, B.L., Armbruster, B.N., Ernsberger, P., Irwin, J.J., Shoichet, B.K.: Relating protein pharmacology by ligand chemistry. Nat. Biotechnol. 25(2), 197–206 (2007)CrossRefGoogle Scholar
  22. 22.
    van Laarhoven, T., Nabuurs, S.B., Marchiori, E.: Gaussian interaction profile kernels for predicting drug-target interaction. Bioinformatics 27(21), 3036–3043 (2011)CrossRefGoogle Scholar
  23. 23.
    Mei, J.P., Kwoh, C.K., Yang, P., Li, X.L., Zheng, J.: Drug-target interaction prediction by learning from local information and neighbors. Bioinformatics 29(2), 238–245 (2013)CrossRefGoogle Scholar
  24. 24.
    Pahikkala, T., Airola, A., Pietilä, S., Shakyawar, S., Szwajda, A., Tang, J., Aittokallio, T.: Toward more realistic drug-target interaction predictions. Briefings Bioinform. 16(2), 325–337 (2015)CrossRefGoogle Scholar
  25. 25.
    Pérot, S., Regad, L., Reynès, C., Spérandio, O., Miteva, M.A., Villoutreix, B.O., Camproux, A.C.: Insights into an original pocket-ligand pair classification: a promising tool for ligand profile prediction. PloS One 8(6), e63730 (2013)CrossRefGoogle Scholar
  26. 26.
    Peska, L., Vojtas, P.: Recommending for disloyal customers with low consumption rate. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 455–465. Springer, Cham (2014). CrossRefGoogle Scholar
  27. 27.
    Pilászy, I., Tikk, D.: Recommending new movies: even a few ratings are more valuable than metadata. In: 3rd ACM Conference on Recommender Systems, pp. 93–100 (2009)Google Scholar
  28. 28.
    Plantevit, M., Charnois, T., Klema, J., Rigotti, C., Crémilleux, B.: Combining sequence and itemset mining to discover named entities in biomedical texts: a new type of pattern. Int. J. Data Min. Model. Manag. 1(2), 119–148 (2009)zbMATHGoogle Scholar
  29. 29.
    Radovanović, M., Nanopoulos, A., Ivanović, M.: Hubs in space: popular nearest neighbors in high-dimensional data. J. Mach. Learn. Res. 11, 2487–2531 (2010)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Sönströd, C., Johansson, U., Norinder, U., Boström, H.: Comprehensible models for predicting molecular interaction with heart-regulating genes. In: 7th IEEE International Conference on Machine Learning and Applications, pp. 559–564 (2008)Google Scholar
  31. 31.
    Stensbo-Smidt, K., Igel, C., Zirm, A., Pedersen, K.S.: Nearest neighbour regression outperforms model-based prediction of specific star formation rate. In: IEEE International Conference on Big Data, pp. 141–144 (2013)Google Scholar
  32. 32.
    Stražar, M., Žitnik, M., Zupan, B., Ule, J., Curk, T.: Orthogonal matrix factorization enables integrative analysis of multiple RNA binding proteins. Bioinformatics 32(10), 1527–1535 (2016)CrossRefGoogle Scholar
  33. 33.
    Tomašev, N., Buza, K., Marussy, K., Kis, P.B.: Hubness-aware classification, instance selection and feature construction: survey and extensions to time-series. In: Stańczyk, U., Jain, L.C. (eds.) Feature Selection for Data and Pattern Recognition. SCI, vol. 584, pp. 231–262. Springer, Heidelberg (2015). Google Scholar
  34. 34.
    Ullrich, K., Kamp, M., Gärtner, T., Vogt, M., Wrobel, S.: Ligand-based virtual screening with co-regularised support vector regression. In: 16th IEEE International Conference on Data Mining Workshops, pp. 261–268 (2016)Google Scholar
  35. 35.
    Ullrich, K., Mack, J., Welke, P.: Ligand affinity prediction with multi-pattern kernels. In: Calders, T., Ceci, M., Malerba, D. (eds.) DS 2016. LNCS (LNAI), vol. 9956, pp. 474–489. Springer, Cham (2016). CrossRefGoogle Scholar
  36. 36.
    van Laarhoven, T., Marchiori, E.: Predicting drug-target interactions for new drug compounds using a weighted nearest neighbor profile. PloS One 8(6), e66952 (2013)Google Scholar
  37. 37.
    Wang, Y., Zeng, J.: Predicting drug-target interactions using restricted Boltzmann machines. Bioinformatics 29(13), i126–i134 (2013)CrossRefGoogle Scholar
  38. 38.
    Xia, Z., Wu, L.Y., Zhou, X., Wong, S.T.: Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces. BMC Syst. Biol. 4(Suppl 2), S6 (2010)CrossRefGoogle Scholar
  39. 39.
    Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W., Kanehisa, M.: Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 24(13), i232–i240 (2008)CrossRefGoogle Scholar
  40. 40.
    Zhang, P., Agarwal, P., Obradovic, Z.: Computational drug repositioning by ranking and integrating multiple data sources. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8190, pp. 579–594. Springer, Heidelberg (2013). CrossRefGoogle Scholar
  41. 41.
    Zheng, X., Ding, H., Mamitsuka, H., Zhu, S.: Collaborative matrix factorization with multiple similarities for predicting drug-target interactions. In: 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1025–1033 (2013)Google Scholar
  42. 42.
    Zhu, S., Okuno, Y., Tsujimoto, G., Mamitsuka, H.: A probabilistic model for mining implicit chemical compound-gene relations from literature. Bioinformatics 21(Suppl. 2), ii245–ii251 (2005)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Knowledge Discovery and Machine LearningRheinische Friedrich-Wilhelms-Universität BonnBonnGermany
  2. 2.Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic

Personalised recommendations