Advertisement

A Lambda Calculus for Density Matrices with Classical and Probabilistic Controls

  • Alejandro Díaz-Caro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10695)

Abstract

In this paper we present two flavors of a quantum extension to the lambda calculus. The first one, \(\lambda _\rho \), follows the approach of classical control/quantum data, where the quantum data is represented by density matrices. We provide an interpretation for programs as density matrices and functions upon them. The second one, \(\lambda _\rho ^\circ \), takes advantage of the density matrices presentation in order to follow the mixed trace of programs in a kind of generalised density matrix. Such a control can be seen as a weaker form of the quantum control and data approach.

Keywords

Lambda calculus Quantum computing Density matrices Classical control 

Notes

Acknowledgements

We want to thank the anonymous reviewer for some important references and suggestions on future lines of work.

References

  1. 1.
    Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, STOC 2001, pp. 50–59. ACM (2001)Google Scholar
  2. 2.
    Altenkirch, T., Grattage, J.J.: A functional quantum programming language. In: Proceedings of LICS-2005, pp. 249–258. IEEE Computer Society (2005)Google Scholar
  3. 3.
    Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, STOC 2001, pp. 37–49. ACM (2001)Google Scholar
  4. 4.
    Arrighi, P., Díaz-Caro, A.: A System F accounting for scalars. Logical Methods Comput. Sci. 8(1:11) (2012)Google Scholar
  5. 5.
    Arrighi, P., Díaz-Caro, A., Valiron, B.: The vectorial \(\lambda \)-calculus. Inf. Comput. 254(1), 105–139 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Arrighi, P., Dowek, G.: Lineal: A linear-algebraic lambda-calculus. Logical Methods Comput. Sci. 13(1:8) (2017)Google Scholar
  7. 7.
    Assaf, A., Díaz-Caro, A., Perdrix, S., Tasson, C., Valiron, B.: Call-by-value, call-by-name and the vectorial behaviour of the algebraic \(\lambda \)-calculus. Logical Methods Comput. Sci. 10(4:8) (2014)Google Scholar
  8. 8.
    Bǎdescu, C., Panangaden, P.: Quantum alternation: prospects and problems. In: Heunen, C., Selinger, P., Vicary, J. (eds.) Proceedings of QPL-2015. Electronic Proceedings in Theoretical Computer Science, vol. 195, pp. 33–42 (2015)Google Scholar
  9. 9.
    D’Hondt, E., Panangaden, P.: Quantum weakest preconditions. Mathe. Struct. Comput. Sci. 16, 429–451 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Díaz-Caro, A.: A lambda calculus for density matrices with classical and probabilistic controls. arXiv:1705.00097 (extended version with a 10-pages appendix with proofs) (2017)
  11. 11.
    Díaz-Caro, A., Dowek, G.: Typing quantum superpositions and measurements. To appear in LNCS 10687 (TPNC 2017)Google Scholar
  12. 12.
    Díaz-Caro, A., Martínez, G.: Confluence in probabilistic rewriting. LSFA, to appear in ENTCS (2017)Google Scholar
  13. 13.
    Díaz-Caro, A., Petit, B.: Linearity in the non-deterministic call-by-value setting. In: Ong, L., de Queiroz, R. (eds.) WoLLIC 2012. LNCS, vol. 7456, pp. 216–231. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32621-9_16 CrossRefGoogle Scholar
  14. 14.
    Feng, Y., Duan, R., Ying, M.: Bisimulation for quantum processes. ACM SIGPLAN Notices (POPL 2011) 46(1), 523–534 (2011)CrossRefzbMATHGoogle Scholar
  15. 15.
    Feng, Y., Yu, N., Ying, M.: Model checking quantum markov chains. J. Comput. Syst. Sci. 79(7), 1181–1198 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Green, A.S., Lumsdaine, P.L., Ross, N.J., Selinger, P., Valiron, B.: Quipper: a scalable quantum programming language. ACM SIGPLAN Notices (PLDI 2013) 48(6), 333–342 (2013)CrossRefzbMATHGoogle Scholar
  17. 17.
    Dal Lago, U., Masini, A., Zorzi, M.: Confluence results for a quantum lambda calculus with measurements. Electron. Notes Theor. Comput. Sci. 270(2), 251–261 (2011)CrossRefzbMATHGoogle Scholar
  18. 18.
    Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  19. 19.
    Pagani, M., Selinger, P., Valiron, B.: Applying quantitative semantics to higher-order quantum computing. ACM SIGPLAN Notices (POPL 2014) 49(1), 647–658 (2014)zbMATHGoogle Scholar
  20. 20.
    Selinger, P.: Towards a quantum programming language. Mathe. Struct. Comput. Sci. 14(4), 527–586 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Selinger, P., Valiron, B.: Quantum lambda calculus. In: Gay, S., Mackie, I. (eds.) Semantic Techniques in Quantum Computation, Chap. 9, pp. 135–172. Cambridge University Press (2009)Google Scholar
  22. 22.
    Selinger, P., Valiron, B.: A lambda calculus for quantum computation with classical control. Mathe. Struct. Comput. Sci. 16(3), 527–552 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    van Tonder, A.: A lambda calculus for quantum computation. SIAM J. Comput. 33, 1109–1135 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Vaux, L.: The algebraic lambda calculus. Mathe. Struct. Comput. Sci. 19, 1029–1059 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Ying, M.: Floyd-hoare logic for quantum programs. ACM Trans. Program. Lang. Syst. 33(6), 19:1–19:49 (2011)CrossRefGoogle Scholar
  26. 26.
    Ying, M.: Quantum recursion and second quantisation. arXiv:1405.4443 (2014)
  27. 27.
    Ying, M.: Foundations of Quantum Programming. Elsevier (2016)Google Scholar
  28. 28.
    Ying, M., Ying, S., Wu, X.: Invariants of quantum programs: characterisations and generation. ACM SIGPLAN Notices (POPL 2017) 52(1), 818–832 (2017)CrossRefzbMATHGoogle Scholar
  29. 29.
    Ying, M., Yu, N., Feng, Y.: Defining quantum control flow. arXiv:1209.4379 (2012)
  30. 30.
    Ying, M., Yu, N., Feng, Y.: Alternation in quantum programming: from superposition of data to superposition of programs. arXiv:1402.5172 (2014)
  31. 31.
    Zorzi, M.: On quantum lambda calculi: a foundational perspective. Mathe. Struct. Comput. Sci. 26(7), 1107–1195 (2016)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Universidad Nacional de Quilmes & CONICETBuenos AiresArgentina

Personalised recommendations