Advertisement

Microdissection in Cochlear Implant Research

  • Charles G. Wright
  • Peter S. Roland
Chapter

Abstract

The microdissection method is well suited for laboratory studies focused on improving the effectiveness and safety of implant devices. Such studies include optimization of surgical approaches for implantation, assessment of electrode placement inside the cochlea, and evaluation of inner ear injury that may occur during insertion of electrode arrays.

Keywords

Human temporal bone Implant insertion trials Implant trauma 

References

  1. 1.
    Wilson BS, Dorman MF. Cochlear implants: a remarkable past and a brilliant future. Hear Res. 2008;242:3–21.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Roland JT Jr, Cosetti M, Immerman S, Waltzman SB. Cochlear implantation in the very young child: long-term safety and efficacy. Laryngoscope. 2009;119:2205–10.CrossRefPubMedGoogle Scholar
  3. 3.
    Skarzynski H, Lorens A, Piotrowska A, Anderson I. Partial deafness cochlear implantation provides benefit to a new population of individuals with hearing loss. Acta Otolaryngol. 2006;126:934–40.CrossRefPubMedGoogle Scholar
  4. 4.
    Von Ilberg CA, Baumann U, Keifer J, Tillein J, OF A. Electric-acoustic stimulation of the auditory system: a review of the first decade. Audiol Neurotol. 2011;16(Suppl 2):1–30.CrossRefGoogle Scholar
  5. 5.
    Van de Heyning P, Punte AK. Electric acoustic stimulation: a new era in prosthetic hearing rehabilitation. Adv Otorhinolaryngol. 2010;67:1–5.PubMedGoogle Scholar
  6. 6.
    Woodson EA, Reiss LA, Turner CW, Gfeller K, Gantz BJ. The hybrid cochlear implant: a review. Adv Otorhinolaryngol. 2010;67:125–34.PubMedGoogle Scholar
  7. 7.
    Gifford RH, Dorman MF, Skarzynski H, Lorens A, Polak M, Driscoll CL, et al. Cochlear implantation with hearing preservation yields significant benefit for speech recognition in complex listening environments. Ear Hear. 2013;34:413–25.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Gantz BJ, Turner C, Gfeller KE, Lowder MW. Preservation of hearing in cochlear implant surgery: advantages of combined electrical and acoustical speech processing. Laryngoscope. 2005;115:796–802.CrossRefPubMedGoogle Scholar
  9. 9.
    Gstoettner W, Kiefer J, Baumgartner W-D, Pok S, Peters S, Adunka O. Hearing preservation in cochlear implantation for electric acoustic stimulation. Acta Otolaryngol. 2004;124:384–52.CrossRefGoogle Scholar
  10. 10.
    Carlson ML, Driscoll CLW, Gifford RH, Service GJ, Tombers NM, Hughes-Borst BJ, et al. Implications of minimizing trauma during conventional cochlear implantation. Otol Neurotol. 2011;32:962–8.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Roland PS, Wright CG. Surgical aspects of cochlear implantation: mechanisms of insertional trauma. In: Moller AR, editor. Cochlear and brainstem implants, Adv Otorhinolaryngol, vol. 64. Basel: Karger; 2006. p. 11–30.Google Scholar
  12. 12.
    Wright CG, Roland PS. Temporal bone microdissection for anatomic study of cochlear implant electrodes. Cochlear Implants Int. 2005;6:159–68.CrossRefPubMedGoogle Scholar
  13. 13.
    Wright CG, Roland PS, Kuzma J. Advanced Bionics Thin lateral and Helix II electrodes: a temporal bone study. Laryngoscope. 2005;115:2041–5.CrossRefPubMedGoogle Scholar
  14. 14.
    Verberne J, Risi F, Campbell L, Chambers S, O’Leary S. The effect of scala tympani morphology on basilar membrane contact with a straight electrode array: a human temporal bone study. Otol Neurotol. 2017;38:447–53.CrossRefGoogle Scholar
  15. 15.
    O’Connell BP, Cakir A, Hunter JB, Francis DO, Noble JH, Labadie RF. Electrode location and angular insertion depth are predictors of audiologic outcomes in cochlear implantation. Otol Neurotol. 2016;37:1016–23.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ishiyama A, Doherty J, Ishiyama G, Quesnel AM, Lopez I, Linthicum FH. Post hybrid cochlear implant hearing loss and endolymphatic hydrops. Otol Neurotol. 2016;37:1516–21.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Bas E, Dinh CT, Garham C, Polak M, Van de Water TR. Conservation of hearing and protection of hair cells in cochlear implant patients with residual hearing. Anat Rec. 2012;295:1909–27.CrossRefGoogle Scholar
  18. 18.
    Martinez Devesa P, Michaels L, Wright A. Ossicular fixation caused by bone dust after saccus decompression surgery. Otol Neurotol. 2002;23:949–52.CrossRefPubMedGoogle Scholar

Suggested Reading

  1. Boyd PJ. Potential benefits from deeply inserted cochlear implant electrodes. Ear Hear. 2011;32:411–27.CrossRefPubMedGoogle Scholar
  2. Büchner A, Illg A, Majdani O, Lenarz T. Investigation of the effect of cochlear implant electrode length on speech comprehension in quiet and noise compared with the results with users of electro-acoustic-stimulation, a retrospective analysis. PLoS One. 2017;12:e0174900. https://doi.org/10.1371/journal.pone.0174900.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Clark G. Cochlear implants: fundamentals and applications. New York: Springer; 2003.CrossRefGoogle Scholar
  4. Nadol JB Jr, Eddington DK. Histopathology of the inner ear relevant to cochlear implantation. Adv Otorhinolaryngol. 2006;64:31–49.PubMedGoogle Scholar
  5. Roland JT Jr. A model for cochlear implant electrode insertion and force evaluation: results with a new electrode design and insertion technique. Laryngoscope. 2005;115:1325–39.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Charles G. Wright
    • 1
  • Peter S. Roland
    • 1
  1. 1.Department of Otolaryngology-Head and Neck SurgeryUniversity of Texas Southwestern Medical CenterDallasUSA

Personalised recommendations