Typing Quantum Superpositions and Measurement

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10687)

Abstract

We propose a way to unify two approaches of non-cloning in quantum lambda-calculi. The first approach is to forbid duplicating variables, while the second is to consider all lambda-terms as algebraic-linear functions. We illustrate this idea by defining a quantum extension of first-order simply-typed lambda-calculus, where the type is linear on superposition, while allows cloning base vectors. In addition, we provide an interpretation of the calculus where superposed types are interpreted as vector spaces and non-superposed types as their basis.

Keywords

Quantum computing Lambda-calculus Algebraic linearity Linear logic Measurement 

Notes

Acknowledgements

We would like to thank Eduardo Bonelli, Luca Paolini, Simona Ronchi della Rocca and Luca Roversi for interesting comments and suggestions.

References

  1. 1.
    Abramsky, S.: Computational interpretations of linear logic. Theor. Comput. Sci. 111(1), 3–57 (1993)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Altenkirch, T., Grattage, J.: A functional quantum programming language. In: Proceedings of LICS 2005, pp. 249–258. IEEE (2005)Google Scholar
  3. 3.
    Arrighi, P., Díaz-Caro, A.: A system F accounting for scalars. Logical Methods in Computer Science 8(1:11) (2012)Google Scholar
  4. 4.
    Arrighi, P., Díaz-Caro, A., Valiron, B.: The vectorial lambda-calculus. Inf. Comput. 254(1), 105–139 (2017)CrossRefMATHGoogle Scholar
  5. 5.
    Arrighi, P., Dowek, G.: Lineal: a linear-algebraic lambda-calculus. Logical Methods in Computer Science 13(1:8) (2017)Google Scholar
  6. 6.
    Assaf, A., Díaz-Caro, A., Perdrix, S., Tasson, C., Valiron, B.: Call-by-value, call-by-name and the vectorial behaviour of the algebraic \(\lambda \)-calculus. Logical Methods in Computer Science 10(4:8) (2014)Google Scholar
  7. 7.
    Barber, A.: Dual intuitionistic linear logic. Technical report ECS-LFCS-96-347, The Laboratory for Foundations of Computer Science, University of Edinburgh (1996)Google Scholar
  8. 8.
    Díaz-Caro, A., Petit, B.: Linearity in the non-deterministic call-by-value setting. In: Ong, L., de Queiroz, R. (eds.) WoLLIC 2012. LNCS, vol. 7456, pp. 216–231. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32621-9_16 CrossRefGoogle Scholar
  9. 9.
    Girard, J.Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Green, A.S., Lumsdaine, P.L., Ross, N.J., Selinger, P., Valiron, B.: Quipper: a scalable quantum programming language. In: ACM SIGPLAN Notices (PLDI 2013), vol. 48, no. 6, pp. 333–342 (2013)Google Scholar
  11. 11.
    Pagani, M., Selinger, P., Valiron, B.: Applying quantitative semantics to higher-order quantum computing. In: ACM SIGPLAN Notices (POPL 2014), vol. 49, no. 1, pp. 647–658 (2014)Google Scholar
  12. 12.
    Peterson, G.E., Stickel, M.E.: Complete sets of reductions for some equational theories. J. ACM 28(2), 233–264 (1981)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Selinger, P., Valiron, B.: Quantum lambda calculus. In: Gay, S., Mackie, I. (eds.) Semantic Techniques in Quantum Computation, pp. 135–172. Cambridge University Press, Cambridge (2009). Chapter 9Google Scholar
  14. 14.
    Zorzi, M.: On quantum lambda calculi: a foundational perspective. Math. Struct. Comput. Sci. 26(7), 1107–1195 (2016)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Universidad Nacional de Quilmes and CONICETBernalArgentina
  2. 2.Inria, LSV, ENS Paris-SaclayCachan CedexFrance

Personalised recommendations