Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 749))

  • 1254 Accesses

Abstract

The probabilistic clustering techniques can be applied to generate fuzzy sets in situations where there is little or no information about data. Quite often, they generate a huge number of clusters. These clusters can be interpreted as fuzzy sets in a process of building a fuzzy system. A large number of fuzzy sets introduce noise to the fuzzy system, hence the need to reduce their number. Fuzzy Similarity Measures (FSMs) are widely used for comparison of fuzzy sets. Multiple FSMs have been proposed so far, but identifying a single FSM that is the most suitable for a given task is not always a straightforward process. On many occasions, FSMs are used to reduce a number of fuzzy sets. In this paper, we present the results of analyzing suitability of FSMs to reduce number of fuzzy sets and fuzzy if-then rules for an image segmentation problem. We use a PG-Means algorithm to generate fuzzy sets on both input and output variables. We propose and apply algorithms utilizing FSMs to reduce the number of fuzzy sets and rules. The paper includes a case study investigating the application of the proposed method on two images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A comprehensive analysis of FSM is presented in the paper ‘Experimental Evaluation and Comparison of Fuzzy Similarity Measures’ to be submitted to IEEE Transactions of Fuzzy Systems.

References

  1. C.-F. Juang, C.-Y. Wang, A self-generating fuzzy system with ant and particle swarm cooperative optimization. Expert Syst. Appl. 36, 5362–5370 (2009)

    Article  Google Scholar 

  2. H. Bellaaj, R. Ketata, M. Chtourou, A new method for fuzzy rule base reduction. J. Intell. Fuzzy Syst. 25(3), 605–613 (2013)

    Google Scholar 

  3. A. Garcia-Garcia, A. Mendez-Vazquez, Learning fuzzy rules through ant optimization, lasso and dirichlet mixtures, in 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), July 2014, pp. 2558–2565

    Google Scholar 

  4. D. Dubois, H. Prade, A unifying view of comparison indices in a fuzzy set-theoretic framework. Fuzzy Sets Possibility Theory: Recent Dev.(Pergamon, New York, 1982)

    Google Scholar 

  5. W.-J. Wang, New similarity measures on fuzzy sets and on elements. Fuzzy Sets Syst. 85(3), 305–309 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Lee-Kwang, Y.-S. Song, K.-M. Lee, Similarity measure between fuzzy sets and between elements. Fuzzy Sets Syst. 62(3), 291–293 (1994)

    Article  MathSciNet  Google Scholar 

  7. X. Wang, B.D. Baets, E. Kerre, A comparative study of similarity measures. Fuzzy Sets Syst. 73(2), 259–268 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. I. Turksen, Z. Zhong, An approximate analogical reasoning schema based on similarity measures and interval-valued fuzzy sets. Fuzzy Sets Syst. 34(3), 323–346 (1990)

    Article  Google Scholar 

  9. S. Santini, R. Jain, Similarity measures. Pattern Anal. Mach. Intell. IEEE Trans. 21(9), 871–883 (1999)

    Article  Google Scholar 

  10. Y. Jin, W. von Seelen, B. Sendhoff, On generating fc3 fuzzy rule systems from data using evolution strategies. Syst. Man Cybern. Part B: Cybern. IEEE Trans. 29(6), 829–845 (1999)

    Article  Google Scholar 

  11. M.-Y. Chen, D. Linkens, Rule-base self-generation and simplification for data-driven fuzzy models. Fuzzy Sets Syst. 142(2), 243–265 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Y. Jin, Fuzzy modeling of high-dimensional systems: complexity reduction and interpretability improvement. Fuzzy Syst. IEEE Trans. 8(2), 212–221 (2000)

    Article  Google Scholar 

  13. T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to modeling and control. Syst. Man Cybern. IEEE Trans. SMC-15(1), 116–132 (1985)

    Google Scholar 

  14. L.A. Zadeh, Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  15. C. Cornelis, E. Kerre, Inclusion Measures in Intuitionistic Fuzzy Set Theory. (Berlin, Heidelberg: Springer Berlin Heidelberg, 2003), pp. 345–356. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-45062-728

  16. G. Bordogna, P. Bosc, G. Pasi, Fuzzy inclusion in database and information retrieval query interpretation, in Proceedings of the 1996 ACM Symposium on Applied Computing, ser. SAC’96. New York, NY, USA: ACM, 1996, pp. 547–551. [Online]. Available: http://doi.acm.org/10.1145/331119.331451

  17. P. Bosc, O. Pivert, On a reinforced fuzzy inclusion and its application to database querying. (Berlin, Heidelberg: Springer Berlin Heidelberg, 2012), pp. 351–360. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-31709-536

  18. D. Sinha, E.R. Dougherty, Fuzzification of set inclusion: theory and applications. Fuzzy Sets Syst. 55(1), 15–42 (1993). [Online]. Available: http://www.sciencedirect.com/science/article/pii/016501149390299W

  19. C. Cornelis, C. V. der Donck, E. Kerre, Sinhadougherty approach to the fuzzification of set inclusion revisited. Fuzzy Sets Syst, 134(2), 283–295 (2003). [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0165011402002257

  20. I. Beg, S. Ashraf, Fuzzy inclusion and design of measure of fuzzy inclusion. RIMAI J., 8 (2012)

    Google Scholar 

  21. M. Wygralak, Fuzzy inclusion and fuzzy equality of two fuzzy subsets, fuzzy operations for fuzzy subsets, Fuzzy Sets Syst. 10(13), 157–168 (1983). [Online]. Available:www.sciencedirect.com/science/article/pii/S0165011483801122

  22. A. Pal, B. Mondal, N. Bhattacharyya, S. Raha, Similarity in fuzzy systems. J. Uncertainty Anal. Appl. 2(1) (2014)

    Google Scholar 

  23. C.P. Pappis, N.I. Karacapilidis, A comparative assessment of measures of similarity of fuzzy values. Fuzzy Sets Syst. 56(2), 171–174 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. W. Zeng, H. Li, Inclusion measures, similarity measures, and the fuzziness of fuzzy sets and their relations. Int. J. Intell. Syst. 21(6), 639–653 (2006)

    Article  MATH  Google Scholar 

  25. T. Liao, Z. Zhang, A review of similarity measures for fuzzy systems, in Fuzzy Systems, 1996. Proceedings of the Fifth IEEE International Conference on, vol. 2, Sep 1996, pp. 930–935

    Google Scholar 

  26. M. Alamuri, B. Surampudi, A. Negi, A survey of distance/similarity measures for categorical data, in Neural Networks (IJCNN), 2014 International Joint Conference on, July 2014, pp. 1907–1914

    Google Scholar 

  27. S. Raha, N. Pal, K. Ray, Similarity-based approximate reasoning: methodology and application. Syst. Man Cybern. Part A: Syst. Humans IEEE Trans. 32(4), 541–547 (2002)

    Article  Google Scholar 

  28. H. L. Capitaine, C. Fr ́elicot, Towards a unified logical framework of fuzzy implications to compare fuzzy sets, in Proceedings of the Joint 2009 International Fuzzy Systems Association World Congress and 2009 European Society of Fuzzy Logic and Technology Conference, Lisbon, Portugal, July 20–24, 2009, pp. 1200–1205

    Google Scholar 

  29. V.R. Young, Fuzzy subsethood. Fuzzy Sets Syst. 77(3), 371–384 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Goguen, The logic of inexact concepts. Synthese 19(3–4), 325–373 (1969). [Online]. Available: http://dx.doi.org/10.1007/BF00485654

  31. D. Dubois, H. Prade, Fuzzy sets and systems—theory and applications (Academic press, New York, 1980)

    MATH  Google Scholar 

  32. M. Wygralak, Fuzzy inclusion and fuzzy equality of two fuzzy subsets, fuzzy operations for fuzzy subsets. Fuzzy Sets Syst. 10(1), 157–168 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Nachtegael, H. Heijmans, D. Van der Weken, E. Kerre, Fuzzy adjunctions in mathematical morphology, in Proceedings of JCIS, 2003, pp. 202–205

    Google Scholar 

  34. P. Bosc, A. Hadjali, O. Pivert, Graded tolerant inclusion and its axiomatization, in Proceedings of the 12th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU), 2008

    Google Scholar 

  35. I. Beg, S. Ashraf, Fuzzy relational calculus. Bull. Malays. Math. Sci. Soc. 2 (2013)

    Google Scholar 

  36. I. Beg, S. Ashraf, Kleene’s fuzzy similarity and measure of similarity. Ann. Fuzzy Math. Inform. 6(2), 251–261 (2013)

    MathSciNet  MATH  Google Scholar 

  37. A. Garcia-Garcia, M. Reformat, A. Mendez-Vazquez, Similarity-based method for reduction of fuzzy rules, in 2014 North American Fuzzy Information Processing Society (NAFIPS), October 2016

    Google Scholar 

  38. Y.F.G. Hamerly, PG-means: learning the number of clusters in data. Adv. Neural. Inf. Process. Syst. 19, 393–400 (2007)

    Google Scholar 

  39. A. Rosenberg, Automatic detection and classification of prosodic events, Ph.D. Dissertation, Columbia University, 2009

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank prof. Greg Hamerly, from the Baylor University, for letting them use the PG-Means program he developed with Yu Feng [38].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo Garcia-Garcia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garcia-Garcia, A., Mendez-Vazquez, A., Reformat, M.Z. (2018). Generation and Reduction of Fuzzy Sets with PG-Means and Fuzzy Similarity Measures. In: Castillo, O., Melin, P., Kacprzyk, J. (eds) Fuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications. Studies in Computational Intelligence, vol 749. Springer, Cham. https://doi.org/10.1007/978-3-319-71008-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71008-2_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71007-5

  • Online ISBN: 978-3-319-71008-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics