Advertisement

Path Following Fuzzy System for a Nonholonomic Mobile Robot Based on Frontal Camera Information

  • Yoshio RubioEmail author
  • Kenia Picos
  • Ulises Orozco-Rosas
  • Carlos Sepúlveda
  • Enrique Ballinas
  • Oscar Montiel
  • Oscar Castillo
  • Roberto Sepúlveda
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 749)

Abstract

This work proposes a fuzzy approach for path following of a nonholonomic mobile robot, based on the information of a frontal camera. The proposed methodology is divided in three stages. The first stage gets the image of the frontal camera and processes the image to detect and isolate the desired path to follow and eliminate non-useful information. The second stage estimates the orientation for different sections of the path to follow. Finally, in the last stage, a fuzzy system is designed and simulated to control the steering direction of the mobile robot. We show the design, simulations, and experiments using the fuzzy controller. The results are evaluated and discussed in terms of quantitative metrics.

Keywords

Autonomous mobile robot Fuzzy controller Image processing Path following Line detection 

Notes

Acknowledgements

We thank Instituto Politecnico Nacional (IPN), to the Comisión de Fomento y Apoyo Académico del IPN (COFAA), and the Mexican National Council of Science and Technology (CONACYT) for supporting our research activities.

References

  1. 1.
    X. Xiang, C. Yu, Q. Zhang, Robust fuzzy 3D path following for autonomous underwater vehicle subject to uncertainties. Comput. Oper. Res. (in press) (2016)Google Scholar
  2. 2.
    M.S. Masmoudi, N. Krichen, M. Masmoudi, N. Derbel, Fuzzy logic controllers design for omnidirectional mobile robot navigation. Appl. Soft Comput. 49, 901–919 (2016)CrossRefGoogle Scholar
  3. 3.
    A. Bakdi, A. Hentout, B. Boutami, A. Maoudj, O. Hachour, B. Bouzouia, Optimal path planning and execution for mobile robots using genetic algorithm and adaptive fuzzy-logic control. Robot. Auton. Syst. 89, 95–109 (2017)CrossRefGoogle Scholar
  4. 4.
    C.-H. Sun, Y.-J. Chen, Y.-T. Wang, S.-K. Huang, Sequentially switched fuzzy-model-based control for wheeled mobile robot with visual odometry. Appl. Math. Model. (in press) (2016)Google Scholar
  5. 5.
    O. Montiel, R. Sepúlveda, I. Murcio, U. Orozco-Rosas, Geo-navigation for a mobile robot and obstacle avoidance using fuzzy controllers, in Recent Advances on Hybrid Approaches for Designing Intelligent Systems. Studies in Computational Intelligence 547, ed. by O. Castillo, P. Melin, W. Pedrycz, J. Kacprzyk. (Springer, 2014), pp. 647–669Google Scholar
  6. 6.
    J.-S.R. Jang, C.-T. Sun, E. Mizutani, Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence Prentice Hall. MATLAB curriculum series (1997)Google Scholar
  7. 7.
    M. Aly, Real time detection of lane markers in urban streets, in 2008 IEEE Intelligent vehicles symposium (Eindhoven, The Netherlands, 2008), 4–6 June 2008, pp. 7–12Google Scholar
  8. 8.
    A. Borkar, M. Hayes, T. Smith, Robust lane detection and tracking with RANSAC and Kalman filter. Paper presented at the 2009 16th IEEE International Conference on Image Processing (ICIP), Cairo, 7–10 Nov 2009, pp. 3261–3264 (2009)Google Scholar
  9. 9.
    G. Antonelli, S. Chiaverini, Experiments of fuzzy lane following for mobile robots. Paper presented at the Proceedings of American Control Conference, Boston, 30 June–2 July 2004, pp. 1079–1084 vol. 2 (2004)Google Scholar
  10. 10.
    C. Coutinho, F. Melicio, Road lane detection for autonomous robot guidance. Paper presented at the 2014 IEEE International Conference on Autonomous Robot Systems and Competitions, Espinho, 14–15 May, pp. 297–302 (2014)Google Scholar
  11. 11.
    A.M. Kumar, P. Simon, Review of lane detection and tracking algorithms in advanced driver assistance system. Int. J. Comput. Sci. Inform. Technol. 7(4), 65–78 (2015)CrossRefGoogle Scholar
  12. 12.
    D. Cáceres-Hernández, L. Kurnianggoro, A. Filomenko, K.H. Jo, Real-time lane region detection using a combination of geometrical and image features. Sensor 16(1935), 1–19 (2016)Google Scholar
  13. 13.
    A. Lopez, C. Cañero, J. Serrat, J. Saludes, F. Lumbreras, T. Graf, Detection of lane markings based on ridgeness and RANSAC, in Proceedings 2005 IEEE Intelligent Transportation Systems, (Vienna, 2005), 16 September 2005, pp. 254–259Google Scholar
  14. 14.
    D. Scaramuzza, 1-Point-RANSAC structure from motion for vehicle-mounted cameras by exploiting non-holonomic constraints. Int. J. Comput. Vis. 95(1), 74–85 (2011)CrossRefGoogle Scholar
  15. 15.
    F. Mufti, R. Mahony, J. Heinzmann, Robust estimation of planar surfaces using spatio-temporal RANSAC for applications in autonomous vehicle navigation. Robot. Auton. Syst. 60(1), 16–28 (2012)CrossRefGoogle Scholar
  16. 16.
    P. Lu, Q. Liu, J. Guo, Camera Calibration Implementation Based on Zhang Zhengyou Plane Method, in Proceedings of the 2015 Chinese Intelligent Systems Conference. Lecture Notes in Electrical Engineering Springer, Berlin, Heidelberg, 2016, ed. by Y. Jia, J. Du, H. Li, W. ZhangGoogle Scholar
  17. 17.
    W.K. Pratt, Digital Image Processing: PIKS Scientific Inside, 4th edn. (Wiley, USA, 2007)CrossRefzbMATHGoogle Scholar
  18. 18.
    C.Y. Low, H. Zamzuri, S.A. Mazlan, Simple robust road lane detection algorithm. Paper presented at the 2014 5th International Conference on Intelligent and Advanced Systems (ICIAS), Kuala Lumpur, 3–5 June 2014, pp. 1–4 (2014)Google Scholar
  19. 19.
    D.H. Ballard, Generalizing the Hough transform to detect arbitrary shapes. Pattern Recogn. 13(2), 111–122 (1981)CrossRefzbMATHGoogle Scholar
  20. 20.
    A. Prasad, B. Sharma, J. Vanualailai, A solution to the motion planning and control problem of a car-like robot via a single-layer perceptron. Robotica 32(6), 935–952 (2014)CrossRefGoogle Scholar
  21. 21.
    B. Li, Z. Shao, Simultaneous dynamic optimization: a trajectory planning method for nonholonomic car-like robots. Adv. Eng. Softw. 87, 30–42 (2015)CrossRefGoogle Scholar
  22. 22.
    E. Masehian, H. Kakahaji, NRR: a nonholonomic random replanner for navigation of car-like robots in unknown environments. Robotica 32(7), 1101–1123 (2014)CrossRefGoogle Scholar
  23. 23.
    J. Ni, J. Hu, Dynamic control of autonomous vehicle at driving limits and experiment on an autonomous formula racing car. Mech. Syst. Signal Process. 90, 154–174 (2017)Google Scholar
  24. 24.
    T.H. Nguyen, D.H. Kim, C.H. Lee, H.K. Kim, S.B. Kim, Mobile robot localization and path planning in a picking robot system using kinect camera in partially known environment, in AETA 2016: Recent Advances in Electrical Engineering and Related Sciences. AETA 2016. Lecture Notes in Electrical Engineering, vol. 415, ed. by V. Duy, T. Dao, S. Kim, N. Tien, I. Zelinka (Springer, Cham, 2017), pp. 686–701Google Scholar
  25. 25.
    U. Rosolia, S. De Bruyne, A.G. Alleyne, Autonomous vehicle control: a nonconvex approach for obstacle avoidence. IEEE Trans. Control Syst. Technol. 25(2), 469–484 (2017)CrossRefGoogle Scholar
  26. 26.
    A.V. Pesterev, A linearizing feedback for stabilizing a car-like robot following a curvilinear path. J. Comput. Syst. Sci. Int. 52(5), 819–830 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    N. Ghita, M. Kloetzer, Trajectory planning for a car-like robot by environment abstraction. Robot. Auton. Syst. 60(4), 609–619 (2012)CrossRefGoogle Scholar
  28. 28.
    G.M. Mendez, O. Castillo, http://scholar.google.com.mx/citations?view_op=view_citation&hl=en&user=1C8gb8IAAAAJ&cstart=40&citation_for_view=1C8gb8IAAAAJ:qxL8FJ1GzNcC, in The 14th IEEE International Conference on Interval Type-2 TSK Fuzzy Logic Systems Using Hybrid Learning Algorithm, Fuzzy Systems, 2005. FUZZ’05, pp. 230–235
  29. 29.
    O. Castillo, P. Melin, Design of Intelligent Systems with Interval Type-2 Fuzzy Logic, in Type-2 Fuzzy Logic: Theory and Applications, pp. 53–76Google Scholar
  30. 30.
    O. Castillo, P. Melin, E. Ramírez, J. Soria, Hybrid intelligent system for cardiac arrhythmia classification with Fuzzy K-Nearest Neighbors and neural networks combined with a fuzzy system, Expert Syst. Appl. 39(3), 2947–2955Google Scholar
  31. 31.
    L. Aguilar, P. Melin, O. Castillo, Intelligent control of a stepping motor drive using a hybrid neuro-fuzzy ANFIS approach, Appl. Soft Comput. 3(3), 209–219Google Scholar
  32. 32.
    P. Melin, O. Castillo, Modelling, simulation and control of non-linear dynamical systems: an intelligent approach using soft computing and fractal theory (CRC Press, 2001)Google Scholar
  33. 33.
    P. Melin, C.I. Gonzalez, J.R. Castro, O. Mendoza, O. Castillo, Edge-detection method for image processing based on generalized type-2 fuzzy logic, IEEE Trans. Fuzzy Syst. 22(6), 1515–1525Google Scholar
  34. 34.
    P. Melin, O. Castillo, Intelligent control of complex electrochemical systems with a neuro-fuzzy-genetic approach, IEEE Trans. Ind. Electron. 48(5), 951–955Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Yoshio Rubio
    • 1
    Email author
  • Kenia Picos
    • 1
  • Ulises Orozco-Rosas
    • 1
  • Carlos Sepúlveda
    • 1
  • Enrique Ballinas
    • 1
  • Oscar Montiel
    • 1
  • Oscar Castillo
    • 2
  • Roberto Sepúlveda
    • 1
  1. 1.Instituto Politécnico NacionalCentro de Investigación y Desarrollo de Tecnología Digital (IPN-CITEDI)TijuanaMexico
  2. 2.Tijuana Institute of TechnologyTijuanaMexico

Personalised recommendations