A Multipurpose Goal Model for Personalised Digital Coaching

  • Jayalakshmi BaskarEmail author
  • Rebecka Janols
  • Esteban Guerrero
  • Juan Carlos Nieves
  • Helena Lindgren
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10685)


Supporting human actors in daily living activities for improving health and wellbeing is a fundamental goal for assistive technology. The personalisation of the support provided by assistive technology in the form of digital coaching requires user models that handle potentially conflicting goals and motives. The aim of this research is to extend a motivational model implemented in an assistive technology, into a multipurpose motivational model for the human actor who is to be supported, which can be translated into a multipurpose goal model for a team of assistive agents. A team of assistive agents is outlined with supplementary goals following the human’s different properties. A method for generating multipurpose arguments relating to different motives were developed, and implemented in a human-agent dialogue system. The results are exemplified based on a use case from an earlier pilot user study of the assistive technology. Future work includes user studies to validate the model.


Personalisation Motivation Multiagent systems Assistive technology Argumentation Persuasive technology Behaviour change 


  1. 1.
    Abel, F., Gao, Q., Houben, G.-J., Tao, K.: Analyzing user modeling on twitter for personalized news recommendations. In: Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds.) UMAP 2011. LNCS, vol. 6787, pp. 1–12. Springer, Heidelberg (2011). CrossRefGoogle Scholar
  2. 2.
    Albaina, I.M., Visser, T., van der Mast, C.A., Vastenburg, M.H.: Flowie: a persuasive virtual coach to motivate elderly individuals to walk. In: 3rd International Conference on Pervasive Computing Technologies for Healthcare, PervasiveHealth 2009, pp. 1–7. IEEE (2009)Google Scholar
  3. 3.
    Arentze, T., Hofman, F., van Mourik, H., Timmermans, H.: Albatross: multiagent, rule-based model of activity pattern decisions. Transp. Res. Record J. Transp. Res. Board 1706, 136–144 (2000)CrossRefGoogle Scholar
  4. 4.
    Baskar, J., Lindgren, H.: Cognitive architecture of an agent for human-agent dialogues. In: Corchado, J.M., et al. (eds.) PAAMS 2014. CCIS, vol. 430, pp. 89–100. Springer, Cham (2014). CrossRefGoogle Scholar
  5. 5.
    Baskar, J., Lindgren, H.: Human-agent dialogues on health topics - an evaluation study. In: Bajo, J., Hallenborg, K., Pawlewski, P., Botti, V., Sánchez-Pi, N., Duque Méndez, N.D., Lopes, F., Julian, V. (eds.) PAAMS 2015. CCIS, vol. 524, pp. 28–39. Springer, Cham (2015). CrossRefGoogle Scholar
  6. 6.
    Baskar, J., Lindgren, H.: Human-agent dialogues and their purposes. In: Proceedings of the European Conference on Cognitive Ergonomics 2017. ECCE 2017, pp. 101–104. ACM, New York (2017).
  7. 7.
    Baskar, J., Yan, C., Lindgren, H.: Instrument-oriented approach to detecting and representing human activity for supporting executive functions and learning. In: Proceedings of the European Conference on Cognitive Ergonomics 2017. ECCE 2017, pp. 105–112. ACM, New York (2017).
  8. 8.
    Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-agent Systems with JADE, vol. 7. Wiley, Cambridge (2007)CrossRefGoogle Scholar
  9. 9.
    Bickmore, T., Mauer, D., Brown, T.: Context awareness in a handheld exercise agent. Pervasive Mobile Comput. 5(3), 226–235 (2009)CrossRefGoogle Scholar
  10. 10.
    Bickmore, T., Mitchell, S., Jack, B., Paasche-Orlow, M.: Response to a relational agent by hospital patients with depressive symptoms. Interact. Comput. 22(4), 289–298 (2010)CrossRefGoogle Scholar
  11. 11.
    Black, E., Hunter, A.: An inquiry dialogue system. Auton. Agent. Multi-Agent Syst. 19(2), 173–209 (2009)CrossRefGoogle Scholar
  12. 12.
    Cámara, J.P., Heras, S., Botti, V.J., Julián, V.: a persuasive social recommendation system. In: Demazeau et al. [18], pp. 367–370Google Scholar
  13. 13.
    Casado, A., Jiménez, A., Bajo, J., Omatu, S.: Multi-agent system for occupational therapy. In: Perez, J.B., et al. (eds.) Trends in Practical Applications of Heterogeneous Multi-Agent Systems. The PAAMS Collection. AISC, vol. 293, pp. 53–60. Springer, Cham (2014). CrossRefGoogle Scholar
  14. 14.
    Castelfranchi, C., Falcone, R.: Founding autonomy: the dialectics between (social) environment and agent’s architecture and powers. In: Nickles, M., Rovatsos, M., Weiss, G. (eds.) AUTONOMY 2003. LNCS (LNAI), vol. 2969, pp. 40–54. Springer, Heidelberg (2004). CrossRefGoogle Scholar
  15. 15.
    Chesñevar, C., McGinnis, J., Modgil, S., Rahwan, I., Reed, C., Simari, G., South, M., Vreeswijk, G., Willmott, S.: Towards an argument interchange format. Knowl. Eng. Rev. 21, 293–316 (2006)CrossRefGoogle Scholar
  16. 16.
    Corchado, J.M., Bajo, J., de Paz, Y., Tapia, D.I.: Intelligent environment for monitoring alzheimer patients, agent technology for health care. Decis. Support Syst. 44, 382–396 (2008)CrossRefGoogle Scholar
  17. 17.
    Cortés, U., Barrué, C., Martínez, A.B., Urdiales, C., Campana, F., Annicchiarico, R., Caltagirone, C.: Assistive technologies for the new generation of senior citizens: the share-it approach. IJCIH 1(1), 35–65 (2010)CrossRefGoogle Scholar
  18. 18.
    Demazeau, Y., Zambonelli, F., Corchado, J.M., Bajo, J. (eds.): PAAMS 2014. LNCS (LNAI), vol. 8473. Springer, Cham (2014). Google Scholar
  19. 19.
    Fasola, J., Matarić, M.J.: A socially assistive robot exercise coach for the elderly. J. Hum.-Robot Interact. 2(2), 3–32 (2013)CrossRefGoogle Scholar
  20. 20.
    Giorgini, P., Kolp, M., Mylopoulos, J., Pistore, M.: The tropos methodology. In: Bergenti, F., Gleizes, M.P., Zambonelli, F. (eds.) Methodologies and Software Engineering for Agent Systems, vol. 11, pp. 89–106. Springer, Boston (2004). CrossRefGoogle Scholar
  21. 21.
    Guerrero, E., Nieves, J.C., Lindgren, H.: ALI: an assisted living system for persons with mild cognitive impairment. In: 2013 IEEE 26th International Symposium on Computer-Based Medical Systems (CBMS), pp. 526–527 (2013)Google Scholar
  22. 22.
    Hanke, S., Sandner, E., Stainer-Hochgatterer, A., Tsiourti, C., Braun, A.: The technical specification and architecture of a virtual support partner. In: Am I (Workshops/Posters) (2015)Google Scholar
  23. 23.
    Janols, R., Guerrero, E., Lindgren, H.: A pilot study on personalised coaching to increase older adults’ physical and social activities. In: De Paz, J.F., Julián, V., Villarrubia, G., Marreiros, G., Novais, P. (eds.) ISAmI 2017. AISC, vol. 615, pp. 140–148. Springer, Cham (2017). Google Scholar
  24. 24.
    Janols, R., Lindgren, H.: A Study on Motivational Messages for Supporting Seniors, UMINF 17.08, Umeå University (2017)Google Scholar
  25. 25.
    Kaptelinin, V., Nardi, B.A.: Acting with Technology: Activity Theory and Interaction Design. The MIT Press, Cambridge (2006)Google Scholar
  26. 26.
    Kielhofner, G.: A Model of Human Occupation. Lippincott, Williams & Wilkins, New York (2008)Google Scholar
  27. 27.
    Lindgren, H.: Personalisation of internet-mediated activity support systems in the rehabilitation of older adults - a pilot study. In: AIME workshop on Personalisation for E-Health 2009, pp. 22–27 (2009)Google Scholar
  28. 28.
    Lindgren, H., Baskar, J., Guerrero, E., Nieves, J.C., Nilsson, I., Yan, C.: Computer-supported assessment for tailoring assistive technology. In: Proceedings of the 6th International Conference on Digital Health Conference, DH 2016, pp. 1–10 (2016)Google Scholar
  29. 29.
    Lindgren, H., Guerrero, E., Janols, R.: Personalised persuasive coaching to increase older adults’ physical and social activities: a motivational model. In: Demazeau, Y., Davidsson, P., Bajo, J., Vale, Z. (eds.) PAAMS 2017. LNCS (LNAI), vol. 10349, pp. 170–182. Springer, Cham (2017). CrossRefGoogle Scholar
  30. 30.
    Lindgren, H., Nilsson, I.: Towards user-authored agent dialogues for assessment in personalised ambient assisted living. Int. J. Web Eng. Technol. 8(2), 154–176 (2013)CrossRefGoogle Scholar
  31. 31.
    Lindgren, H., Winnberg, P.: Evaluation of a semantic web application for collaborative knowledge building in the dementia domain. In: Szomszor, M., Kostkova, P. (eds.) eHealth 2010. LNICSSITE, vol. 69, pp. 62–69. Springer, Heidelberg (2011). CrossRefGoogle Scholar
  32. 32.
    Lindgren, H., Yan, C.: ACKTUS: a platform for developing personalized support systems in the health domain. In: Proceedings of the 5th International Conference on Digital Health 2015, DH 2015, pp. 135–142 (2015)Google Scholar
  33. 33.
    Liu, J., Dolan, P., Pedersen, E.R.: Personalized news recommendation based on click behavior. In: IUI, pp. 31–40 (2010)Google Scholar
  34. 34.
    Monkaresi, H., Calvo, R., Pardo, A., Chow, K., Mullan, B., Lam, M., Twigg, S., Cook, D.: Intelligent diabetes lifestyle coach. In: OzCHI Workshops Programme (2013)Google Scholar
  35. 35.
    Nieves, J.C., Lindgren, H.: Deliberative argumentation for service provision in smart environments. In: Bulling, N. (ed.) EUMAS 2014. LNCS (LNAI), vol. 8953, pp. 388–397. Springer, Cham (2015). Google Scholar
  36. 36.
    Ochs, M., Pelachaud, C., Sadek, D.: An empathic virtual dialog agent to improve human-machine interaction. In: AAMAS 2008 Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 89–96 (2008)Google Scholar
  37. 37.
    op den Akker, H., Jones, V.M., Hermens, H.J.: Tailoring real-time physical activity coaching systems: a literature survey and model. User Model. User-Adap. Inter. 24(5), 351–392 (2014)CrossRefGoogle Scholar
  38. 38.
    Reichherzer, T., Satterfield, S., Belitsos, J., Chudzynski, J., Watson, L.: An agent-based architecture for sensor data collection and reasoning in smart home environments for independent living. In: Khoury, R., Drummond, C. (eds.) AI 2016. LNCS (LNAI), vol. 9673, pp. 15–20. Springer, Cham (2016). Google Scholar
  39. 39.
    Ring, L., Shi, L., Totzke, K., Bickmore, T.: Social support agents for older adults: longitudinal affective computing in the home. J. Multimodal User Interfaces 9(1), 79–88 (2015)CrossRefGoogle Scholar
  40. 40.
    Ruta, M., Scioscia, F., Loseto, G., Di Sciascio, E.: Semantic-based resource discovery and orchestration in home and building automation: a multi-agent approach. IEEE Trans. Industr. Inf. 10(1), 730–741 (2014)CrossRefGoogle Scholar
  41. 41.
    Ryan, R.M., Deci, E.L.: Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. Am. Psychol. 55(1), 68–78 (2000)CrossRefGoogle Scholar
  42. 42.
    Sanchis, A., Julián, V., Corchado, J.M., Billhardt, H., Carrascosa, C.: Improving human-agent immersion using natural interfaces and CBR. Int. J. Artif. Intell. 13(1), 81–93 (2015)Google Scholar
  43. 43.
    Sandlund, M., Lindgren, H., Pohl, P., Melander-Wikman, A., Bergvall-Kåreborn, B., Lundin-Olsson, L.: Towards a mobile exercise application to prevent falls: a Participatory Design Process. Int. J. Child Health Hum. Dev. 9(3), 389–398 (2016)Google Scholar
  44. 44.
    Surie, D., Berker, B., Lindgren, H.: Proxemics Awareness in kitchen AS-A-PAL: tracking objects and human in perspective. In: 9th International Conference on Intelligent Environments, Athens, Greece (IE 2013), pp. 157–164. IEEE Computer Society Press (2013)Google Scholar
  45. 45.
    Telang, P.R., Singh, M.P.: Enhancing tropos with commitments. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Conceptual Modeling: Foundations and Applications. LNCS, vol. 5600, pp. 417–435. Springer, Heidelberg (2009). CrossRefGoogle Scholar
  46. 46.
    Tolchinsky, P., Cortes, U., Modgil, S., Caballero, F., Lopez-Navidad, A.: Increasing human-organ transplant availability: argumentation-based agent deliberation. IEEE Intell. Syst. 21(6), 30–37 (2006)CrossRefGoogle Scholar
  47. 47.
    Tsiourti, C., Ben-Moussa, M., Quintas, J., Loke, B., Jochem, I., Lopes, J.A., et al.: A virtual assistive companion for older adults: design implications for a real-world application. In: SAI Intelligent Systems Conference (2016)Google Scholar
  48. 48.
    Vahidov, R., Kersten, G., Saade, R.: An experimental study of software agent negotiations with humans. Decis. Support Syst. 66, 135–145 (2014)CrossRefGoogle Scholar
  49. 49.
    Vermeulen, J., Neyens, J.C., Spreeuwenberg, M.D., van Rossum, E., Sipers, W., Habets, H., Hewson, D.J., De Witte, L.P.: User-centered development and testing of a monitoring system that provides feedback regarding physical functioning to elderly people. Patient Prefer. Adherence 7, 843 (2013)CrossRefGoogle Scholar
  50. 50.
    Villarica, R., Richards, D.: Intelligent and empathic agent to support student learning in virtual worlds. In: Proceedings of the 2014 Conference on Interactive Entertainment, pp. 1–9. ACM (2014)Google Scholar
  51. 51.
    Walton, D., Reed, C., Macagno, F.: Argumentation Schemes. Cambridge University Press, Cambridge (2008)CrossRefzbMATHGoogle Scholar
  52. 52.
    Yaghoubzadeh, R., Kramer, M., Pitsch, K., Kopp, S.: Virtual agents as daily assistants for elderly or cognitively impaired people. In: Aylett, R., Krenn, B., Pelachaud, C., Shimodaira, H. (eds.) IVA 2013. LNCS (LNAI), vol. 8108, pp. 79–91. Springer, Heidelberg (2013). CrossRefGoogle Scholar
  53. 53.
    Yan, C., Nieves, J.C., Lindgren, H.: A multi-agent system for nested inquiry dialogues. In: Demazeau et al. [18], pp. 303–314Google Scholar
  54. 54.
    Yu, X., Salmon, C.T., Leung, C.: Emotional interactions between artificial companion agents and the elderly. In: Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems, pp. 1991–1992. International Foundation for Autonomous Agents and Multiagent Systems (2015)Google Scholar
  55. 55.
    Zato, C., et al.: PANGEA – platform for automatic construction of organizations of intelligent agents. In: Omatu, S., De Paz Santana, J., González, S., Molina, J., Bernardos, A., Rodríguez, J. (eds.) Distributed Computing and Artificial Intelligence. AISC, vol. 151, pp. 229–239. Springer, Heidelberg (2012). CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computing ScienceUmeå UniversityUmeåSweden
  2. 2.Department of Community Medicine and RehabilitationUmeå UniversityUmeåSweden

Personalised recommendations