From Architectured Materials to Large-Scale Additive Manufacturing

  • Justin DirrenbergerEmail author
Part of the Springer Series in Adaptive Environments book series (SPSADENV)


The classical material-by-design approach has been extensively perfected by materials scientists, while engineers have been optimising structures geometrically for centuries. The purpose of architectured materials is to build bridges across the microscale of materials and the macroscale of engineering structures, to put some geometry in the microstructure. This is a paradigm shift. Materials cannot be considered monolithic anymore. Any set of materials functions, even antagonistic ones, can be envisaged in the future. In this paper, we intend to demonstrate the pertinence of computation for developing architectured materials, and the not-so-incidental outcome which led us to developing large-scale additive manufacturing for architectural applications.



This work is part of the DEMOCRITE (Large-scale additive manufacturing platform) Project PNM-14-SYNG-0002-01, as well as the SCOLASTIC (Systematic Computational Optimisation and Local Laser Processing for Steel-Based Architectured Materials) Project ANR 16-CE08-0009. The author would like to gratefully acknowledge ANR (Agence Nationale de la Recherche), and heSam Université for financial support through its Paris Nouveaux Mondes program.


  1. Ajdari A, Jahromi BH, Papadopoulos J, Nayeb-Hashemi H, Vaziri A (2012) Hierarchical honeycombs with tailorable properties. Int J Solids Struct 49(11–12):1413–1419Google Scholar
  2. Allaire G (2002) Shape optimization by the homogenization method. SpringerGoogle Scholar
  3. Allwood JM, Ashby MF, Gutowski TG, Worrell E (2011) Material efficiency: a white paper. Resour Conserv Recycl 55(3):362–381Google Scholar
  4. Amodeo J, Dancette S, Delannay L (2016) Atomistically-informed crystal plasticity in MgO polycrystals under pressure. Int J Plast 82:177–191Google Scholar
  5. Andreassen E, Lazarov B, Sigmund O (2014) Design of manufacturable 3D extremal elastic microstructure. Mech Mater 69(1):1–10Google Scholar
  6. Andreaus U, dell’Isola F, Giorgio I, Placidi L, Lekszycki T, Rizzi NL (2016) Numerical simulations of classical problems in two-dimensional (non) linear second gradient elasticity. Int J Eng Sci 108:34–50MathSciNetzbMATHGoogle Scholar
  7. Asadpoure A, Tootkaboni M, Valdevit L (2017) Topology optimization of multiphase architected materials for energy dissipation. Comput Methods Appl Mech Eng 325:314–329MathSciNetGoogle Scholar
  8. Ashby MF, Bréchet Y (2003) Designing hybrid materials. Acta Mater 51:5801–5821Google Scholar
  9. Auffray N, Dirrenberger J, Rosi G (2015) A complete description of bi-dimensional anisotropic strain-gradient elasticity. Int J Solids Struct 69–70:195–210Google Scholar
  10. Baumers M, Dickens P, Tuck C, Hague R (2016) The cost of additive manufacturing: machine productivity, economies of scale and technology-push. Technological Forecasting & Social ChangeGoogle Scholar
  11. Bendsøe M, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech EngGoogle Scholar
  12. Bendsøe M, Sigmund O (2004) Topology optimization. SpringerGoogle Scholar
  13. Berdin C, Yao ZY, Pascal S (2013) Internal stresses in polycrystalline zirconia: microstructure effects. Comput Mater Sci 70:140–144Google Scholar
  14. Bertoldi K, Reis P, Willshaw S, Mullin T (2010) Negative Poisson’s ratio behavior induced by an elastic instability. Adv Mater 22(3):361–366Google Scholar
  15. Besson J, Cailletaud G, Chaboche J-L, Forest S, Blétry M (2010) Non-linear mechanics of materials, vol 167. Solid Mechanics and Its Applications. Springer, HeidelbergGoogle Scholar
  16. Bironeau A, Dirrenberger J, Sollogoub C, Miquelard-Garnier G, Roland S (2016) Evaluation of morphological representative sample sizes for nanolayered polymer blends. J Microsc 264(1):48–58Google Scholar
  17. Bornert M, Bretheau T, Gilormini P (2001) Homogénéisation en mécanique des matériaux, Tome 1: Matériaux aléatoires élastiques et milieux périodiques. HermèsGoogle Scholar
  18. Bouaziz O, Bréchet Y, Embury JD (2008) Heterogeneous and architectured materials: a possible strategy for design of structural materials. Adv Eng Mater 10(1–2):24–36. Scholar
  19. Bouaziz O, Masse JP, Allain S, Orgéas L, Latil P (2013) Compression of crumpled aluminum thin foils and comparison with other cellular materials. Mater Sci Eng A: Structural Materials: Properties, Microstructure and Processing 570:1–7Google Scholar
  20. Bréchet Y, Embury JD (2013) Architectured materials: expanding materials space. Scripta Mater 68(1):1–3Google Scholar
  21. Brothers AH, Dunand DC (2006) Density-graded cellular aluminum. Adv Eng Mater 8(9):805–809Google Scholar
  22. Buswell R, Soar R, Gibb A, Thorpe A (2007) Freeform construction: mega-scale rapid manufacturing for construction. Automation Construction 16:224–231Google Scholar
  23. Cailletaud G, Forest S, Jeulin D, Feyel F, Galliet I, Mounoury V, Quilici S (2003) Some elements of microstructural mechanics. Comput Mater Sci 27:351–374Google Scholar
  24. Canyurt OE, Hajela P (2010) Cellular genetic algorithm technique for the multicriterion design optimization. Struct Multidiscip Optim 40:201–214Google Scholar
  25. Caty O, Maire E, Bouchet R (2008) Fatigue of metal hollow spheres structures. Adv Eng Mater 10(3):179–184Google Scholar
  26. Cesaretti G, Dini E, Kestelier XD, Colla V, Pambaguian L (2014) Building components for an outpost on the Lunar soil by means of a novel 3D printing technology. Acta Astronaut 93:430–450Google Scholar
  27. Challis VJ, Roberts AP, Wilkins AH (2008) Design of three dimensional isotropic microstructures for maximized stiffness and conductivity. Int J Solids Struct 45:4130–4146zbMATHGoogle Scholar
  28. Chéhab B, Zurob H, Embury D, Bouaziz O, Bréchet Y (2009) Compositionally graded steels: a strategy for materials development. Adv Eng Mater 11(12):992–999Google Scholar
  29. Chen Y, Liu XN, Hu GK, Sun QP, Zheng QS (2014) Micropolar continuum modeling of bi-dimensional tetrachiral lattices. Proc R Soc A Math Phys Eng Sci 470(2165):20130734Google Scholar
  30. Chu DN, Xie YM, Hira A, Steven GP (1996) Evolutionary structural optimization for problems with stiffness constraints. Finite Elem Anal Des 21(4):239–251zbMATHGoogle Scholar
  31. Courtois L, Maire E, Perez M, Rodney D, Bouaziz O, Bréchet Y (2012) Mechanical properties of monofilament entangled materials. Adv Eng Mater 14(12):1128–1133Google Scholar
  32. Cui C, Ohmori H, Sasaki M (2003) Computational morphogenesis of 3D structures by extended ESO method. J Int Assoc Shell Spatial Struct 44(1):51–61Google Scholar
  33. Dalaq AS, Abueidda DW, Al-Rub RKA, Jasiuk IM (2016) Finite element prediction of effective elastic properties of interpenetrating phase composites with architectured 3D sheet reinforcements. Int J Solids Struct 83:169–182Google Scholar
  34. Decker L, Jeulin D, Tovena I (1998) 3D morphological analysis of the connectivity of a porous medium. Acta Stereologica 17(1):107–112Google Scholar
  35. dell’Isola F, Della Corte A, Giorgio I (2017) Higher-gradient continua: the legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives. Math Mech Solids 22(4):852–872MathSciNetzbMATHGoogle Scholar
  36. Deshpande VS, Fleck NA (2000) Isotropic constitutive models for metallic foams. J Mech Phys Solids 48:1253–1283zbMATHGoogle Scholar
  37. Deshpande VS, Fleck NA, Ashby MF (2001) Effective properties of the octet-truss lattice material. J Mech Phys Solids 49(8):1747–1769zbMATHGoogle Scholar
  38. Dirrenberger J (2012) Effective properties of architectured materials. Ph.D. Thesis, MINESParisTech, Paris, Dec 2012Google Scholar
  39. Dirrenberger, J.: From architectured materials to the development of large-scale additive manufacturing. SPOOL 4(1):13–16 (2017).
  40. Dirrenberger J, Forest S, Jeulin D (2013) Effective elastic properties of auxetic microstructures: anisotropy and structural applications. Int J Mech Mater Des 9(1):21–33. Scholar
  41. Dirrenberger J, Forest S, Jeulin D (2012) Elastoplasticity of auxetic materials. Comput Mater Sci 64:57–61. Scholar
  42. Dirrenberger J, Forest S, Jeulin D (2014) Towards gigantic RVE sizes for stochastic fibrous networks. Int J Solids Struct 51(2):359–376. Scholar
  43. Dirrenberger J, Forest S, Jeulin D, Colin C (2011) Homogenization of periodic auxetic materials. Procedia Engineering 10. In: 11th international conference on the mechanical behavior of materials (ICM11), 1847–1852. Scholar
  44. Djumas L, Molotnikov A, Simon GP, Estrin Y (2016) Enhanced mechanical performance of bio-inspired hybrid structures utilising topological interlocking geometry. Sci Rep 6:26706Google Scholar
  45. Duballet R, Baverel O, Dirrenberger J (2017) Classification of building systems for concrete 3D printing. Autom Constr 83:247–258Google Scholar
  46. Duballet R, Baverel O, Dirrenberger J (2018) Design of space truss based insulating walls for robotic fabrication in concrete. In: Rycke KD, Gengnagel C, Baverel O, Burry J, Mueller C, Nguyen MM, Rahm P, Thomsen MR (eds) Humanizing digital reality, Chap. 39, pp. 453-461. Springer. Scholar
  47. Duballet R, Gosselin C, Roux P (2016) Additive manufacturing and multi-objective optimization of graded polystyrene aggregate concrete structures. In: Thomsen M, Tamke M, Gengnagel C, Faircloth B, Scheurer F (eds) Modelling behaviour- design modelling symposium 2015, Chap. Additive manufacturing and multi-objective optimization of graded polystyrene aggregate concrete structuresGoogle Scholar
  48. Duysinx P, Bendsøe MP (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Meth Eng 43(8):1453–1478MathSciNetzbMATHGoogle Scholar
  49. Embury D, Bouaziz O (2010) Steel-based composites: driving forces and classifications. Annu Rev Mater Res 40:213–241Google Scholar
  50. Erk KA, Dunand DC, Shull KR (2008) Titanium with controllable pore fractions by thermoreversible gelcasting of TiH2. Acta Mater 56(18):5147–5157Google Scholar
  51. Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54(4):331–390Google Scholar
  52. Escoda J, Jeulin D, Willot F, Toulemonde C (2015) Three-dimensional morphological modeling of concrete using multiscale Poisson polyhedra. J Microsc 258(1):31–48Google Scholar
  53. Fallet A, Lhuissier P, Salvo L, Bréchet Y (2008) Mechanical behaviour of metallic hollow spheres foam. Adv Eng Mater 10(9):858–862Google Scholar
  54. Fleck NA, Deshpande VS, Ashby MF (2010) Micro-architectured materials: past, present and future. Proc R Soc A Math Phys Eng Sci 466(2121):2495–2516Google Scholar
  55. Ford S, Despeisse M (2016) Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. J Clean Prod 137:1573–1587Google Scholar
  56. François D, Pineau A, Zaoui A (2012) Mechanical behaviour of materials, volume 1: microand macroscopic constitutive behaviour, vol. 180. Solid mechanics and its applications. SpringerGoogle Scholar
  57. Freeman AJ (2002) Materials by design and the exciting role of quantum computation/simulation. J Comput Appl Math 149(1):27–56zbMATHGoogle Scholar
  58. Fritzen F, Forest S, Kondo D, Böhlke T (2013) Computational homogenization of porous materials of Green type. Comput Mech 52(1):121–134MathSciNetzbMATHGoogle Scholar
  59. Geers MGD, Yvonnet J (2016) Multiscale modeling of microstructure-property relations. MRS Bull 41(8):610–616Google Scholar
  60. Ghaedizadeh A, Shen J, Ren X, Xie YM (2016) Tuning the performance of metallic auxetic metamaterials by using buckling and plasticity. Materials 9(54):1–17Google Scholar
  61. Gosselin C, Duballet R, Roux P, Gaudillière N, Dirrenberger J, Morel P (2016) Large-scale 3D printing of ultra-high performance concrete- a new processing route for architects and builders. Mater Des 100:102–109Google Scholar
  62. Guest JK, Prévost JH (2006) Optimizing multifunctional materials: design of microstructures for maximized stiffness and fluid permeability. Int J Solids StructGoogle Scholar
  63. Gutowski TG, Branham MS, Dahmus JB, Jones AJ, Thiriez A, Sekulic DP (2009) Thermodynamic analysis of resources used in manufacturing processes. Environ Sci Technol 43(5):1584–1590Google Scholar
  64. Hajela P, Kim B (2001) On the use of energy minimization for CA based analysis in elasticity. Struct Multidiscip Optim 23:24–33Google Scholar
  65. Hopkins JB, Shaw LA, Weisgraber TH, Farquar GR, Harvey CD, Spadaccini CM (2016) Design of nonperiodic microarchitectured materials that achieve graded thermal expansions. J Mech Robot 8(5):051010Google Scholar
  66. Hopman RK, Leamy MJ (2010) Triangular cellular automata for computing two-dimensional elastodynamic response on arbitrary domains. J Appl Mech 78(2):021020Google Scholar
  67. Hor A, Saintier N, Robert C, Palin-Luc T, Morel F (2014) Statistical assessment of multiaxial HCF criteria at the grain scale. Int J Fatigue 67:151–158Google Scholar
  68. Huang X, Xie YM (2007) Convergent and mesh-independent solutions for bi-directional evolutionary structural optimization method. Finite Elem Anal Des 43(14):1039–1049Google Scholar
  69. Hummel RE (2004) Understanding materials science, 2 edn. Springer-Verlag, New YorkGoogle Scholar
  70. Jean A, Jeulin D, Forest S, Cantournet S, N’Guyen F (2011) A multiscale microstructure model of carbon black distribution in rubber. J Microsc 241(3):243–260Google Scholar
  71. Jeulin D (2000) Random texture models for material structures. Stat Comput 10(2):121–132Google Scholar
  72. Jeulin D, Ostoja-Starzewski M (2001) Mechanics of random and multiscale microstructures. CISM courses. Springer, HeidelbergzbMATHGoogle Scholar
  73. Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D (2003) Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solids Struct 40:3647–3679zbMATHGoogle Scholar
  74. Kanit T, N’Guyen F, Forest S, Jeulin D, Reed M, Singleton S (2006) Apparent and effective physical properties of heterogeneous materials: representativity of samples of two materials from food industry. Comput Methods Appl Mech Eng 195:3960–3982zbMATHGoogle Scholar
  75. Khakalo S, Niiranen J (2017) Isogeometric analysis of higher-order gradient elasticity by user elements of a commercial finite element software. Comput Aided Des 82:154–169MathSciNetGoogle Scholar
  76. Khoshnevis B (2004) Automated construction by contour crafting- related robotics and information technologies. Autom Construct 13:5–19Google Scholar
  77. Kim S, Abdalla MM, Gürdal Z, Jones M (2004) Multigrid accelerated cellular automata for structural design optimization: A 1-D implementation. In: 45th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, Palm Springs, CaliforniaGoogle Scholar
  78. Kolopp A, Rivallant S, Bouvet C (2013) Experimental study of sandwich structures as armour against medium-velocity impacts. Int J Impact Eng 61:24–35Google Scholar
  79. Körner C, Liebold-Ribeiro Y (2015) A systematic approach to identify cellular auxetic materials. Smart Mater Struct 24(2):025013Google Scholar
  80. Kotani M, Ikeda S (2016) Materials inspired by mathematics. Sci Technol Adv Mater 17(1):253–259Google Scholar
  81. Kowalski N, Delannay L, Yan P, Remacle JF (2016) Finite element modeling of periodic polycrystalline aggregates with intergranular cracks. Int J Solids Struct 90:60–68Google Scholar
  82. Labonnote N, Ronnquist A, Manum B, Rüther P (2016) Additive construction: state-of-the-art, challenges and opportunities. Autom Construct 72:347–366Google Scholar
  83. Laszczyk L, Dendievel R, Bouaziz O, Bréchet Y, Parry G (2009) Design of architectured sandwich core materials using topological optimization methods. In: symposium LL-architectured multifunctional materials, vol. 1188, MRS ProceedingsGoogle Scholar
  84. Le Riche R, Haftka RT (2012) On global optimization articles in SMO. Struct Multidiscip Optim 46:627–629Google Scholar
  85. Lebée A, Sab K (2012) Homogenization of thick periodic plates: application of the bending-gradient plate theory to a folded core sandwich panel. Int J Solids Struct 49(19–20):2778–2792Google Scholar
  86. Lecampion B, Vanzo J, Ulm F-J, Huet B, Germay C, Khalfallah I, Dirrenberger J (2011) Evolution of portland cement mechanical properties exposed to CO2-rich fluids: investigation at different scales. In: MPPS 2011, symposium on mechanics and physics of porous solids : a tribute to Pr. Olivier CoussyGoogle Scholar
  87. Lévy M (1874) La statique graphique et ses applications aux constructions. Gauthier-Villars, PariszbMATHGoogle Scholar
  88. Lewandowski M, Amiot M, Perwuelz A (2012) Development and characterization of 3D nonwoven composites. In: Boudenne A (ed) Materials science forum. Polymer composite materials: From Macro, Micro to Nanoscale, vol 714, pp 131–137Google Scholar
  89. Liu J, Gu T, Shan S, Kang SH, Weaver JC, Bertoldi K (2016) Harnessing buckling to design architected materials that exhibit effective negative swelling. Adv Mater 28(31):6619–6624Google Scholar
  90. Madi K, Forest S, Boussuge M, Gailliègue S, Lataste E, Buffière J-Y, Bernard D, Jeulin D (2007) Finite element simulations of the deformation of fused-cast refractories based on X-ray computed tomography. Comput Mater Sci 39:224–229Google Scholar
  91. Matouš K, Geers MGD, Kouznetsova VG, Gillman A (2017) A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials. J Comput Phys 330:192–220MathSciNetGoogle Scholar
  92. Mezeix L, Bouvet C, Huez J, Poquillon D (2009) Mechanical behavior of entangled fibers and entangled cross-linked fibers during compression. J Mater Sci 44(14):3652–3661Google Scholar
  93. Michell AGM (1904) The limit of economy of material in frame structures. Phil Mag 8(6):589–597zbMATHGoogle Scholar
  94. Mirkhalaf M, Khayer Dastjerdi A, Barthelat F (2014) Overcoming the brittleness of glass through bio-inspiration and micro-architecture. Nature CommunGoogle Scholar
  95. Missoum S, Gürdal Z, Setoodeh S (2005) Study of a new local update scheme for cellular automata in structural design. Struct Multidiscip Optim 29:103–112Google Scholar
  96. Olson GB (2001) Beyond discovery: design for a new material world. Calphad 25(2):175–190Google Scholar
  97. Ostoja-Starzewski M (2008) Microstructural randomness and scaling in mechanics of materials. Mordern mechanics and mathematics. Chapman & Hall/CRCGoogle Scholar
  98. Peyrega C, Jeulin D, Delisée C, Malvestio J (2011) 3D morphological characterization of phonic insulation fibrous media. Adv Eng Mater 13(3):156–164zbMATHGoogle Scholar
  99. Placidi L, Barchiesi E, Della Corte A (2017) Identification of two-dimensional pantographic structures with a linear d4 orthotropic second gradient elastic model accounting for external bulk double forces. In: dell’Isola F, Sofonea M, Steigmann D (eds) Mathematical modelling in solid mechanics, Advanced structured materials, Chap 14, vol 69, pp 211–232. Springer, Singapore. Scholar
  100. Placidi L, El Dhaba AR (2015) Semi-inverse method à la Saint-Venant for two-dimensional linear isotropic homogeneous second-gradient elasticity. Math Mech Solids 22(5):919–937MathSciNetzbMATHGoogle Scholar
  101. Rayneau-Kirkhope D, Mao Y, Farr R (2012) Ultralight fractal structures from hollow tubes. Phys Rev Lett 109(204301)Google Scholar
  102. Ren X, Shen J, Ghaedizadeh A, Tian H, Xie YM (2016) A simple auxetic tubular structure with tuneable mechanical properties. Smart Mater StructGoogle Scholar
  103. Rosi G, Auffray N (2016) Anisotropic and dispersive wave propagation within strain-gradient framework. Wave Motion 63:120–134Google Scholar
  104. Rozvany GIN (2009) A critical review of established methods in structural topology optimization. Struct Multidiscip Optim 37:217–237MathSciNetzbMATHGoogle Scholar
  105. Rozvany GIN, Bendsøe MP, Kirsch U (1995) Layout optimization of structures. Appl Mech Rev 48(2):41–119Google Scholar
  106. Salonitis K, Chantzis D, Kappatos V (2017) A hybrid finite element analysis and evolutionary computation method for the design of lightweight lattice components with optimized strutdiameter. Int J Adv Manufact Technol 90(9–12):2689–2701Google Scholar
  107. Schaedler TA, Carter WB (2016) Architected cellular materials. Ann Rev Mater Res 46:187–210Google Scholar
  108. Schaedler TA, Jacobsen AJ, Torrents A, Sorensen AE, Lian J, Greer JR, Valdevit L, Carter WB (2011) Ultralight metallic microlattices. Science 334(6058):962–965Google Scholar
  109. Schindler S, Mergheim J, Zimmermann M, Aurich JC, Steinmann P (2017) Numerical homogenization of elastic and thermal material properties for metal matrix composites (MMC). Continuum Mech Thermodyn 29(1):51–75MathSciNetzbMATHGoogle Scholar
  110. Shim J, Shan S, Košmrlj A, Kang SH, Chen ER, Weaver JC, Bertoldi K (2013) Harnessing instabilities for design of soft reconfigurable auxetic/chiral materials. Soft Matter 9(34):8198–8202Google Scholar
  111. Sigmund O (2011) On the usefulness of non-gradient approaches in topology optimization. Struct Multidiscip Optim 43:589–596MathSciNetzbMATHGoogle Scholar
  112. Smith P, Torquato S (1988) Computer simulation results for the two-point probability function of composite media. J Comput Phys 76(1):176–191zbMATHGoogle Scholar
  113. Steeves CA, Santos e Lucato SL, dos He M, Antinucci E, Hutchinson JW, Evans AG (2007) Concepts for structurally robust materials that combine low thermal expansion with high stiffness. J Mech Phys Solids 55:1803–1822MathSciNetzbMATHGoogle Scholar
  114. Stoychev G, Zakharchenko S, Turcaud S, Dunlop JWC, Ionov L (2012) Shape-programmed folding of stimuli-responsive polymer bilayers. ACS Nano 6(5):3925–3934Google Scholar
  115. Torabian N, Favier V, Dirrenberger J, Adamski F, Ziaei-Rad S, Ranc N (2017) Correlation of the high and very high cycle fatigue response of ferrite based steels with strain ratetemperature conditions. Acta Mater 134:40–52Google Scholar
  116. Torabian N, Favier V, Ziaei-Rad S, Adamski F, Dirrenberger J, Ranc N (2016) Self-heating measurements for a dual-phase steel under ultrasonic fatigue loading for stress amplitudes below the conventional fatigue limit. Proc Struct Integr 2:1191–1198Google Scholar
  117. Torabian N, Favier V, Ziaei-Rad S, Dirrenberger J, Adamski F, Ranc N (2017) Calorimetric studies and self-heating measurements for a dual-phase steel under ultrasonic fatigue loading. In: Wei Z, Nikbin K, McKeighan P, Harlow D (eds) Fatigue and fracture test planning, test data acquisitions and analysis, vol STP1598, pp 81–93, ASTM (2017). Scholar
  118. Torabian N, Favier V, Ziaei-Rad S, Dirrenberger J, Adamski F, Ranc N (2016) Thermal response of DP600 dual-phase steel under ultrasonic fatigue loading. Mater Sci Eng A Struct Mater Prop Microstruct Process 677:97–105Google Scholar
  119. Torquato S (1998) Morphology and effective properties of disordered heterogeneous media. Int J Solids Struct 35(19):2385–2406zbMATHGoogle Scholar
  120. Torquato S (2001) Random heterogeneous materials. SpringerGoogle Scholar
  121. Tovar A, Niebur GL, Sen M, Renaud JE, Sanders B (2004) Bone structure adaptation as a cellular automaton optimization process. In: 45th AIAA/ASME/ASCE/AHS/ASC Structures, structural dynamics & materials conference, Palm Springs, CaliforniaGoogle Scholar
  122. Tovar A, Patel NM, Kaushik AK, Renaud JE (2007) Optimality conditions of the hybrid cellular automata for structural optimization. AIAA J 45(3):673–683Google Scholar
  123. Trinh DK, Jänicke R, Auffray N, Diebels S, Forest S (2012) Evaluation of generalized continuum substitution models for heterogeneous materials. Int J Multiscale Comput Eng 10(6):527–549Google Scholar
  124. Turcaud S, Guiducci L, Fratzl P, Dunlop JWC, Bréchet Y (2011) An excursion into the design space of biomimetic architectured biphasic actuators. Int J Mater Res 102(6):607–612Google Scholar
  125. Vicente WM, Zuo ZH, Pavanello R, Calixto TKL, Picelli R, Xie YM (2016) Concurrent topology optimization for minimizing frequency responses of two-level hierarchical structures. Comput Methods Appl Mech Eng 301:116–136MathSciNetzbMATHGoogle Scholar
  126. Wang ZP, Poh LH, Dirrenberger J, Zhu Y, Forest S (2017) Isogeometric shape optimization of smoothed petal auxetic structures via computational periodic homogenization. Comput Methods Appl Mech Eng 323:250–271MathSciNetGoogle Scholar
  127. Weaver PM, Ashby MF (1996) The optimal selection of material and section-shape. J Eng Des 7(2):129–150Google Scholar
  128. Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49:885–896Google Scholar
  129. Xu B, Huang X, Zhou SW, Xie YM (2016) Concurrent topological design of composite thermoelastic macrostructure and microstructure with multi-phase material for maximum stiffness. Compos Struct 150:84–102Google Scholar
  130. Xu S, Shen J, Zhou S, Huang X, Xie YM (2016) Design of lattice structures with controlled anisotropy. Materials and DesignGoogle Scholar
  131. Yeong CLY, Torquato S (1998) Reconstructing random media. Phys Rev EGoogle Scholar
  132. Yoon HS, Lee JY, Kim HS, Kim MS, Kim ES, Shin YJ, Chu WS, Ahn SH (2014) A comparison of energy consumption in bulk forming, subtractive, and additive processes: review and case study. Int J Precis Eng Manufact Green Technol 1(3):261–279Google Scholar
  133. Zakhama R, Abdalla MM, Smaoui H, Gürdal Z (2009) Multigrid implementation of cellular automata for topology optimization of continuum structures. Comput Modeling Eng Sci 51(1):1–24zbMATHGoogle Scholar
  134. Zhou S, Li Q (2008) Design of graded two-phase microstructures for tailored elasticity gradients. J Mater Sci 43:5157–5167Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire PIMM, Arts et Métiers-ParisTech, Cnam, CNRSParisFrance
  2. 2.XtreeERungis CedexFrance

Personalised recommendations