Capturing Stochastic and Real-Time Behavior in Reo Connectors

  • Yi Li
  • Xiyue Zhang
  • Yuanyi Ji
  • Meng SunEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10623)


Modern distributed systems are often coupled with flexible architectures, composed of heterogenous components, and deployed on different execution nodes. Under such frameworks, connectors (or middlewares) are widely used to organize the separated components and make them functioning. Apparently, reliability of such systems highly depends on the correctness of their connectors. Reo is a channel-based coordination language where complex connectors are constructed from simpler ones through a compositional approach. In this paper, we propose a stochastic and real-time extension of Reo, including a set of new primitive channels and an expressive semantics named Stochastic Timed Automata for Reo (\(\text {STA}_r\)). With the support of \(\text {STA}_r\), different coordination scenarios in existing Reo extensions can be easily encoded, integrated, and analyzed.


Coordination Stochastic Real-time Distributed systems 



The work was partially supported by the National Natural Science Foundation of China under grant no. 61532019, 61202069 and 61272160.


  1. 1.
    The JANI specification of the jani-model format and the jani-interaction protocol.
  2. 2.
    Arbab, F.: Reo: a channel-based coordination model for component composition. Math. Struct. Comput. Sci. 14(3), 329–366 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Arbab, F., Baier, C., de Boer, F.S., Rutten, J.J.M.M.: Models and temporal logical specifications for timed component connectors. Softw. Syst. Model. 6(1), 59–82 (2007)CrossRefGoogle Scholar
  4. 4.
    Arbab, F., Chothia, T., Mei, R., Meng, S., Moon, Y.J., Verhoef, C.: From coordination to stochastic models of QoS. In: Field, J., Vasconcelos, V.T. (eds.) COORDINATION 2009. LNCS, vol. 5521, pp. 268–287. Springer, Heidelberg (2009). CrossRefGoogle Scholar
  5. 5.
    Baier, C.: Probabilistic models for Reo connector circuits. J. Univ. Comput. Sci. 11(10), 1718–1748 (2005)Google Scholar
  6. 6.
    Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in Reo by constraint automata. Sci. Comput. Program. 61(2), 75–113 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Baier, C., Wolf, V.: Stochastic reasoning about channel-based component connectors. In: Ciancarini, P., Wiklicky, H. (eds.) COORDINATION 2006. LNCS, vol. 4038, pp. 1–15. Springer, Heidelberg (2006). CrossRefGoogle Scholar
  8. 8.
    Hahn, E.M., Hartmanns, A., Hermanns, H.: Reachability and reward checking for stochastic timed automata. Electron. Commun. Eur. Assoc. Softw. Sci. Technol. 70 (2014)Google Scholar
  9. 9.
    Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: iscasMc: a web-based probabilistic model checker. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 312–317. Springer, Cham (2014). CrossRefGoogle Scholar
  10. 10.
    Hartmanns, A.: Modest a unified language for quantitative models. In: Proceedings of FDL 2012, pp. 44–51. IEEE (2012)Google Scholar
  11. 11.
    Jongmans, S.S.T.Q., Arbab, F.: Overview of thirty semantic formalisms for Reo. Sci. Ann. Comput. Sci. 22(1), 201–251 (2012)MathSciNetGoogle Scholar
  12. 12.
    Li, H.: Introducing Windows Azure. Apress, Berkely (2009)CrossRefGoogle Scholar
  13. 13.
    Meng, S.: Connectors as designs: the time dimension. In: Proceedings of TASE 2012, pp. 201–208. IEEE Computer Society (2012)Google Scholar
  14. 14.
    Meng, S., Arbab, F.: On resource-sensitive timed component connectors. In: Bonsangue, M.M., Johnsen, E.B. (eds.) FMOODS 2007. LNCS, vol. 4468, pp. 301–316. Springer, Heidelberg (2007). CrossRefGoogle Scholar
  15. 15.
    Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.: How amazon web services uses formal methods. Commun. ACM 58(4), 66–73 (2015)CrossRefGoogle Scholar
  16. 16.
    Oliveira, N., Barbosa, L.S.: An enhanced model for stochastic coordination. Electron. Proc. Theor. Comput. Sci. 228, 35–45 (2016)CrossRefGoogle Scholar
  17. 17.
    Pierro, A., Hankin, C., Wiklicky, H.: Probabilistic KLAIM. In: Nicola, R., Ferrari, G.-L., Meredith, G. (eds.) COORDINATION 2004. LNCS, vol. 2949, pp. 119–134. Springer, Heidelberg (2004). CrossRefGoogle Scholar
  18. 18.
    Priami, C.: Stochastic pi-calculus. Comput. J. 38(7), 578–589 (1995)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Informatics and LMAM, School of Mathematical SciencesPeking UniversityBeijingChina

Personalised recommendations