Advertisement

CLARC: A Cognitive Robot for Helping Geriatric Doctors in Real Scenarios

  • Dimitri Voilmy
  • Cristina Suárez
  • Adrian Romero-Garcés
  • Cristian Reuther
  • Jose Carlos Pulido
  • Rebeca Marfil
  • Luis J. Manso
  • Karine Lan Hing Ting
  • Ana Iglesias
  • Jose Carlos González
  • Javier García
  • Angel García-Olaya
  • Raquel Fuentetaja
  • Fernando Fernández
  • Alvaro Dueñas
  • Luis Vicente Calderita
  • Pablo Bustos
  • T. Barile
  • Juan Pedro Bandera
  • Antonio Bandera
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 693)

Abstract

Comprehensive Geriatric Assessment (CGA) is an integrated clinical process to evaluate the frailty of elderly persons in order to create therapy plans that improve their quality of life. For robotizing these tests, we are designing and developing CLARC, a mobile robot able to help the physician to capture and manage data during the CGA procedures, mainly by autonomously conducting a set of predefined evaluation tests. Built around a shared internal representation of the outer world, the architecture is composed of software modules able to plan and generate a stream of actions, to execute actions emanated from the representation or to update this by including/removing items at different abstraction levels. Percepts, actions and intentions coming from all software modules are grounded within this unique representation. This allows the robot to react to unexpected events and to modify the course of action according to the dynamics of a scenario built around the interaction with the patient. The paper describes the architecture of the system as well as the preliminary user studies and evaluation to gather new user requirements.

Keywords

Assistive robotics Human-robot interaction 

Notes

Acknowledgement

This work has been partially funded by the EU ECHORD++ project (FP7-ICT-601116) and the TIN2015-65686-C5-1-R (MINECO and FEDER funds). Javier García is partially supported by the Comunidad de Madrid (Spain) funds under the project 2016-T2/TIC-1712. The authors warmly thank the members of the “Amis du Living Lab” community for their participation in this research.

References

  1. 1.
    Mahoney, F.I., Barthel, D.: Functional evaluation: the Barthel index. Md. State Med J. 14, 56–61 (1965)Google Scholar
  2. 2.
    Folstein, M., Folstein, S., McHugh, P.: Mini-mental state: a practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12, 189–198 (1975)CrossRefGoogle Scholar
  3. 3.
    Mathias, S., Nayak, U.S.L., Isaacs, B.: Balance in elderly patients: the “get-up and go” test. Arch. Phys. Med. Rehabil. 67, 387–389 (1986)Google Scholar
  4. 4.
    Romero-Garcés, A., Calderita, L.V., Martínez-Gómez, J., Bandera, J.P., Marfil, R., Manso, L.J., Bustos, P., Bandera, A.: The cognitive architecture of a robotic salesman. In: Proceedings of the Conference on Spanish Association for Artificial Intelligence, vol. 15(6), pp. 1067–1083 (2015)Google Scholar
  5. 5.
    Guzmán, C., Alcázar, V., Prior, D., Onaidia, E., Borrajo, D., Fdez-Olivares, J., Quintero, E.: Pelea: a domain-independent architecture for planning, execution and learning. In: Proceedings of the ICAPS 2012 Scheduling and Planning Applications woRKshop (SPARK), Atibaia, São Paulo, pp. 38–45 (2012)Google Scholar
  6. 6.
    McDermott, D.: PDDL - The Planning Domain Definition Language. Technical report (1998)Google Scholar
  7. 7.
    Fuentetaja, R., Borrajo, D., Linares, C.: A Look-ahead B&B search for cost-based planning. In: Proceedings of the 13th Conference of the Spanish Association for Artificial Intelligence, pp. 105–114 (2009)Google Scholar
  8. 8.
    Gray, L.C., Wootton, R.: Comprehensive geriatric assessment “online”. Australas. J. Ageing 27(4), 205–208 (2008)CrossRefGoogle Scholar
  9. 9.
    Rajan, K., Py, F.: T-REX: partitioned inference for AUV mission control. Further Advances in Unmanned Marine Vehicles. The Institution of Engineering and Technology, pp. 171–199 (2012)Google Scholar
  10. 10.
    Petrick, R., Foster, M.E.: Planning for social interaction in a robot bartender domain. In: Proceedings of the 23rd International Conference on Automated Planning and Scheduling, pp. 389–397 (2013)Google Scholar
  11. 11.
    Lazar, J., Feng, J.H., Hochheiser, H.: Research Methods in Human-Computer Interaction. Morgan Kaufmann, San Francisco (2017)Google Scholar
  12. 12.
    Abras, C., Maloney-Krichmar, D., Preece, J.: User-centered design. In: Bainbridge, W. (ed.) Encyclopedia of Human-Computer Interaction, vol. 37(4), pp. 445–456. Sage Publications, Thousand Oaks (2004)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Dimitri Voilmy
    • 2
  • Cristina Suárez
    • 4
  • Adrian Romero-Garcés
    • 1
  • Cristian Reuther
    • 6
  • Jose Carlos Pulido
    • 5
  • Rebeca Marfil
    • 1
  • Luis J. Manso
    • 3
  • Karine Lan Hing Ting
    • 2
  • Ana Iglesias
    • 5
  • Jose Carlos González
    • 5
  • Javier García
    • 5
  • Angel García-Olaya
    • 5
  • Raquel Fuentetaja
    • 5
  • Fernando Fernández
    • 5
  • Alvaro Dueñas
    • 4
  • Luis Vicente Calderita
    • 1
  • Pablo Bustos
    • 3
  • T. Barile
    • 2
  • Juan Pedro Bandera
    • 1
  • Antonio Bandera
    • 1
  1. 1.Universidad de MálagaMálagaSpain
  2. 2.Troyes University of TechnologyTroyesFrance
  3. 3.Universidad de ExtremaduraCáceresSpain
  4. 4.Hospital Universitario Virgen del RocíoSevilleSpain
  5. 5.Universidad Carlos III de MadridMadridSpain
  6. 6.Metralabs Robotics GmbHIlmenauGermany

Personalised recommendations