Modification of Iterative Tikhonov Regularization Motivated by a Problem of Identification of Laser Beam Quality Parameters

  • Teresa RegińskaEmail author
  • Kazimierz Regiński
Part of the Trends in Mathematics book series (TM)


Presented is a new method for finding an approximate minimum of a real function given on a discrete set of points where its values are given with some errors. The applied approach is a certain modification of the iterative Tikhonov regularization. The essence of the presented method is to reduce the initial problem to that of finding an approximation of the function in a class of functions whose minimum can easily be calculated. The presented method is motivated by a problem of identification of laser beam quality parameters, however the scope of its applicability is quite general.


  1. 1.
    G. Chavent, Nonlinear Least Squares for Inverse Problems (Springer, Berlin, 2009)zbMATHGoogle Scholar
  2. 2.
    H. Cheng, C.-L. Fu, X.-L. Feng, An optimal filtering method for the Cauchy problem of the Helmholtz equation. Appl. Math. Lett. 24(6), 958–964 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    A. De Cezaro, M. Haltmeier, A. Leita̋o, O. Scherzer, On Steepest-Descent-Kaczmarz methods for regularizing systems of nonlinear ill-posed equations. Appl. Math. Comput. 202, 596–607 (2008)Google Scholar
  4. 4.
    A. De Cezaro, J. Baumeister, A. Leita̋o, Modified iterated Tikhonov methods for solving systems of nonlinear ill-posed equations. Inverse Prob. Imag. 5(1), 1–17 (2011)Google Scholar
  5. 5.
    H.W. Engl, K. Kunisch, A. Neubauer, Convergence rates for Tikhonov regularization of non-linear ill-posed problems. Inverse Prob. 5, 523–540 (1989)CrossRefzbMATHGoogle Scholar
  6. 6.
    H.W. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems (Kluwer Academic, Dordrecht, 1996)CrossRefzbMATHGoogle Scholar
  7. 7.
    X.-L. Feng, C.-L. Fu, H. Cheng, A regularization method for solving the Cauchy problem for the Helmholtz equation. Appl. Math. Model. 35, 3301–3315 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    B. Kaltenbacher, A. Neubauer, O. Scherzer, Iterative Regularization Methods for Nonlinear Ill-Posed Problems. Radon Series on Computational and Applied Mathematics, vol. 6 (Walter de Gruyter GmbH, Berlin, 2008)Google Scholar
  9. 9.
    H. Kogelnik, T. Li, Laser beams and resonators. Appl. Opt. 5, 1550–1567 (1966)CrossRefGoogle Scholar
  10. 10.
    G.F. Marshall, Handbook of Optical and Laser Scanning (Marcel Dekker, New York, 2004)CrossRefGoogle Scholar
  11. 11.
    E. Pruszyńska-Karbownik, K. Regiński, B. Mroziewicz, M. Szymański, P. Karbownik, K. Kosiel, A. Szerling, Analysis of the spatial distribution of radiation emitted by MIR quantum cascade lasers, in Proceedings of SPIE 8702, Laser Technology 2012: Progress in Lasers, 87020E (2013)Google Scholar
  12. 12.
    H.H. Qin, T. Wei, Two regularization methods for the Cauchy problems of the Helmholtz equation. Appl. Math. Model. 34(4), 947–967 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    T. Regińska, Regularization methods for a mathematical model of laser beams. Eur. J. Math. Comput. Appl. 1(2), 39–49 (2014)Google Scholar
  14. 14.
    T. Regińska, K. Regiński, Approximate solution of a Cauchy problem for the Helmholtz equation. Inverse Prob. 22, 975–989 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    T. Regińska, K. Regiński, Regularization strategy for determining laser beam quality parameters, J. Inverse Ill-Posed Prob. 23(6), 657–671 (2015)MathSciNetzbMATHGoogle Scholar
  16. 16.
    T. Regińska, U. Tautenhahn, Conditional stability estimates and regularization with applications to Cauchy problems for the Helmholtz equation. Numer. Funct. Anal. Optim. 30, 1065–1097 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    K. Regiński, B. Mroziewicz, E. Pruszyńska-Karbownik, Goniometric method of measuring the spatial distribution of intensity of radiation emitted by quantum cascade lasers. Elektronika 10, 48–51 (2011) [in Polish]Google Scholar
  18. 18.
    T.S. Ross, Laser Beam Quality Metrics (SPIE Press, Bellingham, 2013)CrossRefGoogle Scholar
  19. 19.
    A.E. Siegman, Lasers (University Science Books, Mill Valey, CA, 1986)Google Scholar
  20. 20.
    X.-T. Xiong, A regularization method for a Cauchy problem of the Helmholtz equation. J. Comput. Appl. Math. 233(8), 1723–1732 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    X.-T. Xiong, C.-L. Fu, Two approximate methods of a Cauchy problem for the Helmholtz equation. Comput. Appl. Math. 26(2), 285–307 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    H.W. Zhang, H.H. Qin, T. Wei, A quasi-reversibility regularization method for the Cauchy problem of the Helmholtz equation. Int. J. Comput. Math. 88(4), 839–850 (2011)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of Mathematics of the Polish Academy of SciencesWarsawPoland
  2. 2.Institute of Electron TechnologyWarsawPoland

Personalised recommendations