Advertisement

Radiation Dose Reduction Strategies for Acute Abdominal and Pelvic CT

  • Samad Shah
  • Faisal Khosa
  • Savvas NicolaouEmail author
Chapter

Abstract

Since the inception of CT, its use in the emergency department (ED) has increased rapidly, raising concerns about potential risks of radiation exposure to patients, particularly the pediatric population. Therefore, radiologists should adhere to the ALARA principle, to ensure that imaging examinations are clinically indicated and to keep the radiation dose to a minimum. A substantial radiation dose reduction in abdominal and pelvic CT performed in emergency patients is achievable using the strategies described below while maintaining an acceptable level of diagnostic image quality.

Keywords

CT Radiation exposure Strategies CT parameters Iterative reconstruction 

References

  1. 1.
    Broder J, Warshauer DM. Increasing utilization of computed tomography in the adult emergency department, 2000-2005. Emerg Radiol. 2006;13(1):25–30.CrossRefGoogle Scholar
  2. 2.
    Broder J, Fordham LA, Warshauer DM. Increasing utilization of computed tomography in the pediatric emergency department, 2000-2006. Emerg Radiol. 2007;14(4):227–32.CrossRefGoogle Scholar
  3. 3.
    Brenner DJ, Hall EJ. Computed tomography—an increasing source of radiation exposure. N Engl J Med. 2007;357(22):2277–84.CrossRefGoogle Scholar
  4. 4.
    Sodickson A. Strategies for reducing radiation exposure in multi-detector row CT. Radiol Clin N Am. 2012;50(1):1–14.CrossRefGoogle Scholar
  5. 5.
    McCollough CH, Chen GH, Kalender W, Leng S, Samei E, Taguchi K, et al. Achieving routine submillisievert CT scanning: report from the summit on management of radiation dose in CT. Radiology. 2012;264(2):567–80.CrossRefGoogle Scholar
  6. 6.
    Gans SL, Stoker J, Boermeester MA. Plain abdominal radiography in acute abdominal pain; past, present, and future. Int J Gen Med. 2012;5:525–33.PubMedPubMedCentralGoogle Scholar
  7. 7.
    ACR Appropriateness Criteria®—American College of Radiology. 2017. https://www.acr.org/Quality-Safety/Appropriateness-Criteria.
  8. 8.
    Rosenthal DI, Weilburg JB, Schultz T, Miller JC, Nixon V, Dreyer KJ, et al. Radiology order entry with decision support: initial clinical experience. J Am Coll Radiol. 2006;3(10):799–806.CrossRefGoogle Scholar
  9. 9.
    Sistrom CL, Dang PA, Weilburg JB, Dreyer KJ, Rosenthal DI, Thrall JH. Effect of computerized order entry with integrated decision support on the growth of outpatient procedure volumes: seven-year time series analysis. Radiology. 2009;251(1):147–55.CrossRefGoogle Scholar
  10. 10.
    Sodickson A, Opraseuth J, Ledbetter S. Outside imaging in emergency department transfer patients: CD import reduces rates of subsequent imaging utilization. Radiology. 2011;260(2):408–13.CrossRefGoogle Scholar
  11. 11.
    Chatoorgoon K, Huezo K, Rangel E, François N, Schweer L, Daugherty M, et al. Unnecessary imaging, not hospital distance, or transportation mode impacts delays in the transfer of injured children. Pediatr Emerg Care. 2010;26(7):481–6.CrossRefGoogle Scholar
  12. 12.
    Haley T, Ghaemmaghami V, Loftus T, Gerkin RD, Sterrett R, Ferrara JJ. Trauma: the impact of repeat imaging. Am J Surg. 2009;198(6):858–62.CrossRefGoogle Scholar
  13. 13.
    Emick DM, Carey TS, Charles AG, Shapiro ML. Repeat imaging in trauma transfers: a retrospective analysis of computed tomography scans repeated upon arrival to a level I trauma center. J Trauma Acute Care Surg. 2012;72(5):1255–62.CrossRefGoogle Scholar
  14. 14.
    Newgard CD, McConnell KJ, Hedges JR, Mullins RJ. The benefit of higher level of care transfer of injured patients from nontertiary hospital emergency departments. J Trauma. 2007;63(5):965–71.CrossRefGoogle Scholar
  15. 15.
    Gupta R, Greer SE, Martin ED. Inefficiencies in a rural trauma system: the burden of repeat imaging in interfacility transfers. J Trauma. 2010;69(2):253–5.CrossRefGoogle Scholar
  16. 16.
    Liepert AE, Cochran A. CT utilization in transferred trauma patients. J Surg Res. 2011;170(2):309–13.PubMedGoogle Scholar
  17. 17.
    Laméris W, van Randen A, van Es HW, van Heesewijk JPM, van Ramshorst B, Bouma WH, et al. Imaging strategies for detection of urgent conditions in patients with acute abdominal pain: diagnostic accuracy study. BMJ. 2009;338:b2431.CrossRefGoogle Scholar
  18. 18.
    Sala E, Watson CJE, Beadsmoore C, Groot-Wassink T, Fanshawe TR, Smith JC, et al. A randomized, controlled trial of routine early abdominal computed tomography in patients presenting with non-specific acute abdominal pain. Clin Radiol. 2007;62(10):961–9.CrossRefGoogle Scholar
  19. 19.
    Yarmish GM, Smith MP, Rosen MP, Baker ME, Blake MA, Cash BD, et al. ACR appropriateness criteria right upper quadrant pain. J Am Coll Radiol. 2014;11(3):316–22.CrossRefGoogle Scholar
  20. 20.
    Smith MP, Katz DS, Lalani T, Carucci LR, Cash BD, Kim DH, et al. ACR appropriateness criteria® right lower quadrant pain--suspected appendicitis. Ultrasound Q. 2015;31(2):85–91.CrossRefGoogle Scholar
  21. 21.
    Ecanow JS, Gore RM. Evaluating patients with left upper quadrant pain. Radiol Clin N Am. 2015;53(6):1131–57.CrossRefGoogle Scholar
  22. 22.
    ACR Appropriateness Criteria® left lower quadrant pain—suspected diverticulitis. National guideline clearinghouse. 2017. https://www.guideline.gov/summaries/summary/48282.
  23. 23.
    Vandermeer FQ, Wong-You-Cheong JJ. Imaging of acute pelvic pain. Clin Obstet Gynecol. 2009;52(1):2–20.CrossRefGoogle Scholar
  24. 24.
    Frush DP, Donnelly LF. Helical CT in children: technical considerations and body applications. Radiology. 1998;209(1):37–48.CrossRefGoogle Scholar
  25. 25.
    White KS. Invited article: helical/spiral CT scanning: a pediatric radiology perspective. Pediatr Radiol. 1996;26(1):5–14.CrossRefGoogle Scholar
  26. 26.
    Brenner D, Elliston C, Hall E, Berdon W. Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol. 2001;176(2):289–96.CrossRefGoogle Scholar
  27. 27.
    Kellow ZS, MacInnes M, Kurzencwyg D, Rawal S, Jaffer R, Kovacina B, et al. The role of abdominal radiography in the evaluation of the nontrauma emergency patient. Radiology. 2008;248(3):887–93.CrossRefGoogle Scholar
  28. 28.
    Stoker J, van Randen A, Laméris W, Boermeester MA. Imaging patients with acute abdominal pain. Radiology. 2009;253(1):31–46.CrossRefGoogle Scholar
  29. 29.
    Pediatric radiology & imaging – Radiation safety – image gently. 2017. http://www.imagegently.org/.
  30. 30.
    Mayo-Smith WW, Hara AK, Mahesh M, Sahani DV, Pavlicek W. How I do it: managing radiation dose in CT. Radiology. 2014;273(3):657–72.CrossRefGoogle Scholar
  31. 31.
    Huda W, Mettler FA. Volume CT dose index and dose-length product displayed during CT: what good are they? Radiology. 2011;258(1):236–42.CrossRefGoogle Scholar
  32. 32.
    Yu L, Li H, Fletcher JG, McCollough CH. Automatic selection of tube potential for radiation dose reduction in CT: a general strategy. Med Phys. 2010;37(1):234–43.CrossRefGoogle Scholar
  33. 33.
    Hough DM, Fletcher JG, Grant KL, Fidler JL, Yu L, Geske JR, et al. Lowering kilovoltage to reduce radiation dose in contrast-enhanced abdominal CT: initial assessment of a prototype automated kilovoltage selection tool. AJR Am J Roentgenol. 2012;199(5):1070–7.CrossRefGoogle Scholar
  34. 34.
    Winklehner A, Goetti R, Baumueller S, Karlo C, Schmidt B, Raupach R, et al. Automated attenuation-based tube potential selection for thoracoabdominal computed tomography angiography: improved dose effectiveness. Investig Radiol. 2011;46(12):767–73.CrossRefGoogle Scholar
  35. 35.
    Goetti R, Winklehner A, Gordic S, Baumueller S, Karlo CA, Frauenfelder T, et al. Automated attenuation-based kilovoltage selection: preliminary observations in patients after endovascular aneurysm repair of the abdominal aorta. AJR Am J Roentgenol. 2012;199(3):W380–5.CrossRefGoogle Scholar
  36. 36.
    Corwin MT, Chang M, Fananapazir G, Seibert A, Lamba R. Accuracy and radiation dose reduction of a limited abdominopelvic CT in the diagnosis of acute appendicitis. Abdom Imaging. 2015;40(5):1177–82.CrossRefGoogle Scholar
  37. 37.
    Broder JS, Hollingsworth CL, Miller CM, Meyer JL, Paulson EK. Prospective double-blinded study of abdominal-pelvic computed tomography guided by the region of tenderness: estimation of detection of acute pathology and radiation exposure reduction. Ann Emerg Med. 2010;56(2):126–34.CrossRefGoogle Scholar
  38. 38.
    Kim SH, Yoon J-H, Lee JH, Lim Y-J, Kim OH, Ryu JH, et al. Low-dose CT for patients with clinically suspected acute appendicitis: optimal strength of sinogram affirmed iterative reconstruction for image quality and diagnostic performance. Acta Radiol. 2015;56(8):899–907.CrossRefGoogle Scholar
  39. 39.
    Karabulut N, Kiroglu Y, Herek D, Kocak TB, Erdur B. Feasibility of low-dose unenhanced multi-detector CT in patients with suspected acute appendicitis: comparison with sonography. Clin Imaging. 2014;38(3):296–301.CrossRefGoogle Scholar
  40. 40.
    Remer EM, Herts BR, Primak A, Obuchowski NA, Greiwe A, Roesel DM, et al. Detection of urolithiasis: comparison of 100% tube exposure images reconstructed with filtered back projection and 50% tube exposure images reconstructed with sinogram-affirmed iterative reconstruction. Radiology. 2014;272(3):749–56.CrossRefGoogle Scholar
  41. 41.
    Poletti P-A, Platon A, Rutschmann OT, Schmidlin FR, Iselin CE, Becker CD. Low-dose versus standard-dose CT protocol in patients with clinically suspected renal colic. AJR Am J Roentgenol. 2007;188(4):927–33.CrossRefGoogle Scholar
  42. 42.
    Laqmani A, Veldhoen S, Dulz S, Derlin T, Behzadi C, Schmidt-Holtz J, et al. Reduced-dose abdominopelvic CT using hybrid iterative reconstruction in suspected left-sided colonic diverticulitis. Eur Radiol. 2016;26(1):216–24.CrossRefGoogle Scholar
  43. 43.
    Othman AE, Bongers MN, Zinsser D, Schabel C, Wichmann JL, Arshid R, et al. Evaluation of reduced-dose CT for acute non-traumatic abdominal pain: evaluation of diagnostic accuracy in comparison to standard-dose CT. Acta Radiol. 2017;13:028418511770315.Google Scholar
  44. 44.
    Padole A, Ali Khawaja RD, Kalra MK, Singh S. CT radiation dose and iterative reconstruction techniques. Am J Roentgenol. 2015;204(4):W384–92.CrossRefGoogle Scholar
  45. 45.
    Singh S, Kalra MK, Hsieh J, Licato PE, Do S, Pien HH, et al. Abdominal CT: comparison of adaptive statistical iterative and filtered back projection reconstruction techniques. Radiology. 2010;257(2):373–83.CrossRefGoogle Scholar
  46. 46.
    Singh S, Kalra MK, Do S, Thibault JB, Pien H, O’Connor OJ, et al. Comparison of hybrid and pure iterative reconstruction techniques with conventional filtered back projection: dose reduction potential in the abdomen. J Comput Assist Tomogr. 2012;36(3):347–53.CrossRefGoogle Scholar
  47. 47.
    Gervaise A, Naulet P, Beuret F, Henry C, Pernin M, Portron Y, et al. Low-dose CT with automatic tube current modulation, adaptive statistical iterative reconstruction, and low tube voltage for the diagnosis of renal colic: impact of body mass index. AJR Am J Roentgenol. 2014;202(3):553–60.CrossRefGoogle Scholar
  48. 48.
    Gervaise A, Osemont B, Louis M, Lecocq S, Teixeira P, Blum A. Standard dose versus low-dose abdominal and pelvic CT: comparison between filtered back projection versus adaptive iterative dose reduction 3D. Diagn Interv Imaging. 2014;95(1):47–53.CrossRefGoogle Scholar
  49. 49.
    McLaughlin PD, Murphy KP, Hayes SA, Carey K, Sammon J, Crush L, et al. Non-contrast CT at comparable dose to an abdominal radiograph in patients with acute renal colic; impact of iterative reconstruction on image quality and diagnostic performance. Insights Imaging. 2014;5(2):217–30.CrossRefGoogle Scholar
  50. 50.
    Pickhardt PJ, Lubner MG, Kim DH, Tang J, Ruma JA, del Rio AM, et al. Abdominal CT with model-based iterative reconstruction (MBIR): initial results of a prospective trial comparing ultralow-dose with standard-dose imaging. AJR Am J Roentgenol. 2012;199(6):1266–74.CrossRefGoogle Scholar
  51. 51.
    Yasaka K, Katsura M, Akahane M, Sato J, Matsuda I, Ohtomo K. Model-based iterative reconstruction for reduction of radiation dose in abdominopelvic CT: comparison to adaptive statistical iterative reconstruction. Springerplus. 2013;2(1):209.CrossRefGoogle Scholar
  52. 52.
    Modica MJ, Kanal KM, Gunn ML. The obese emergency patient: imaging challenges and solutions. Radiographics. 2011;31(3):811–23.CrossRefGoogle Scholar
  53. 53.
    Wichmann JL, Hardie AD, Schoepf UJ, Felmly LM, Perry JD, Varga-Szemes A, et al. Single- and dual-energy CT of the abdomen: comparison of radiation dose and image quality of 2nd and 3rd generation dual-source CT. Eur Radiol. 2017;27(2):642–50.CrossRefGoogle Scholar
  54. 54.
    Purysko AS, Primak AN, Baker ME, Obuchowski NA, Remer EM, John B, et al. Comparison of radiation dose and image quality from single-energy and dual-energy CT examinations in the same patients screened for hepatocellular carcinoma. Clin Radiol. 2014;69(12):e538–44.CrossRefGoogle Scholar
  55. 55.
    Dose index registry - American College of Radiology. 2017. https://www.acr.org/Quality-Safety/National-Radiology-Data-Registry/Dose-Index-Registry.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Vancouver General Hospital, University of British ColumbiaVancouverCanada

Personalised recommendations