Advertisement

Advertisement and Expectation in Lifestyle Changes: A Computational Model

  • Seyed Amin TabatabaeiEmail author
  • Jan Treur
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10654)

Abstract

Inspired by elements from neuroscience and psychological literature, a computational model of forming and changing of behaviours is presented which can be used as the basis of a human-aware assistance system. The presented computational model simulates the dynamics of mental states of a human during formation and change of behaviour. The application domain focuses on sustainable behavior.

Keywords

Computational modeling Temporal-casual network Cognitive states Behaviour change Decision making 

References

  1. 1.
    Riley, W.T., Rivera, D.E., Atienza, A.A., Nilsen, W., Allison, S.M., Mermelstein, R.: Health behavior models in the age of mobile interventions: are our theories up to the task? Transl. Behav. Med. 1(1), 53–71 (2011)CrossRefGoogle Scholar
  2. 2.
    Kjeldskov, J., Skov, M.B., Paay, J., Pathmanathan, R.: Using mobile phones to support sustainability: a field study of residential electricity consumption. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2347–2356. ACM (2012)Google Scholar
  3. 3.
    Oliver, R.L.: A cognitive model of the antecedents and consequences of satisfaction decisions. J. Mark. Res. 17, 460–469 (1980)CrossRefGoogle Scholar
  4. 4.
    Zhang, C., van Wissen, A., Lakens, D., Vanschoren, J., De Ruyter, B., IJsselsteijn, W.A.: Anticipating habit formation: a psychological computing approach to behavior change support. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, pp. 1247–1254. ACM (2016)Google Scholar
  5. 5.
    Michie, S., van Stralen, M.M., West, R.: The behaviour change wheel: a new method for characterising and designing behaviour change interventions. Implementation Sci. 6(1), 42 (2011)CrossRefGoogle Scholar
  6. 6.
    Hargreaves, T.: Practice-ing behaviour change: applying social practice theory to pro-environmental behaviour change. J. Consum. Cult. 11(1), 79–99 (2011)CrossRefGoogle Scholar
  7. 7.
    Free, C., Phillips, G., Galli, L., Watson, L., Felix, L., Edwards, P., Patel, V., Haines, A.: The effectiveness of mobile-health technology-based health behaviour change or disease management interventions for health care consumers: a systematic review. PLoS Med. 10(1), e1001,362 (2013)Google Scholar
  8. 8.
    Owens, S., Driffill, L.: How to change attitudes and behaviours in the context of energy. Energy Policy 36(12), 4412–4418 (2008)CrossRefGoogle Scholar
  9. 9.
    Gardner, G.T., Stern, P.C.: Environmental Problems and Human Behavior. Allyn & Bacon, Boston (1996)Google Scholar
  10. 10.
    Oliver, R.L.: Expectancy theory predictions of salesmen’s performance. J. Mark. Res. 11, 243–253 (1974)CrossRefGoogle Scholar
  11. 11.
    Holdford, D., Lovelace-Elmore, B.: Applying the principles of human motivation to pharmaceutical education. J. Pharm. Teach. 8(4), 1–18 (2001)CrossRefGoogle Scholar
  12. 12.
    Hossain, M.A., Quaddus, M.: Expectation-confirmation theory in information system research: a review and analysis. In: Dwivedi, Y., Wade, M., Schneberger, S. (eds.) Information Systems Theory. Integrated Series in Information Systems, vol. 28, pp. 441–469. Springer, New York (2012).  https://doi.org/10.1007/978-1-4419-6108-2_21 CrossRefGoogle Scholar
  13. 13.
    Treur, J.: Dynamic modeling based on a temporal-causal network modeling approach. Biol. Inspired Cogn. Archit. 16, 131–168 (2016)Google Scholar
  14. 14.
    Klein, M.C.A., Mogles, N., Treur, J., van Wissen, A.: A computational model of habit learning to enable ambient support for lifestyle change. In: Mehrotra, K.G., Mohan, C.K., Oh, J.C., Varshney, P.K., Ali, M. (eds.) IEA/AIE 2011. LNCS, vol. 6704, pp. 130–142. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21827-9_14 CrossRefGoogle Scholar
  15. 15.
    Blankendaal, R., Parinussa, S., Treur, J.: A temporal-causal modelling approach to integrated contagion and network change in social networks. In: ECAI, pp. 1388–1396 (2016)Google Scholar
  16. 16.
    Abro, A.H., Klein, M.C., Manzoor, A.R., Tabatabaei, S.A., Treur, J.: Modeling the effect of regulation of negative emotions on mood. Biol. Inspired Cogn. Archit. 13, 35–47 (2015)Google Scholar
  17. 17.
    Abro, A.H., Klein, M.C.A., Tabatabaei, S.A.: An agent-based model for the role of social support in mood regulation. In: Bajo, J., Hallenborg, K., Pawlewski, P., Botti, V., Sánchez-Pi, N., Duque Méndez, N.D., Lopes, F., Julian, V. (eds.) PAAMS 2015. CCIS, vol. 524, pp. 15–27. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19033-4_2 CrossRefGoogle Scholar
  18. 18.
    Treur, J.: Network-Oriented Modeling. UCS. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45213-5 CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.VU University AmsterdamAmsterdamThe Netherlands

Personalised recommendations