Advertisement

Understanding Simulation Validation—The Hermeneutic Perspective

  • Nicole J. SaamEmail author
Chapter
Part of the Simulation Foundations, Methods and Applications book series (SFMA)

Abstract

The thesis of a hermeneutic perspective on validation in simulation has existed ever since Kleindorfer et al. (Manag Sci 44:1087–1099, 1998) published their overview of various positions in the philosophy of science. This chapter introduces the distinction between a hermeneutics in validation and a hermeneutics of validation. I argue that the hermeneutic perspective according to Kleindorfer, O’Neill and Ganeshan, which qualifies as a hermeneutics in validation perspective, is rather fruitless. Instead, a hermeneutics of simulation validation is proposed on the basis of Gadamer’s philosophical hermeneutics. The goal of the hermeneutics of validation is to understand simulation validation. The challenge is to set up a hermeneutic situation in the first place. Hermeneutic aims to demonstrate how simulation validation is historically situated, revealing the hidden prejudice (prejudgement) in validating, and distinguishing between legitimate prejudice and prejudice that has to be overcome. Understanding simulation validation is a dialogic, practical, situated activity.

Keywords

Simulation validation Philosophical hermeneutics Understanding Interdisciplinary dialogue 

Notes

Acknowledgements

The author thanks Claus Beisbart for helpful discussions concerning this manuscript.

References

  1. Arendt, H. (1958). The human condition. Chicago: University of Chicago Press.Google Scholar
  2. Arendt, H. (1969). Crisis of the republic. New York: Harcourt Brace Jovanovich.Google Scholar
  3. Barlas, Y., & Carpenter, S. (1990). Philosophical roots of model validation. Two paradigms. System Dynamics Review, 6, 148–166.Google Scholar
  4. Bernstein, R. J. (1983). Beyond objectivism and relativism: Science, hermeneutics, and praxis. Philadelphia, PA: University of Pennsylvania Press.Google Scholar
  5. Caldwell, S., & Morrison, R. J. (2000). Validation of longitudinal dynamic microsimulation models. Experience with CORSIM and DYNACAN. In: L. Mitton, H. Sutherland, & M. J. Weeks (Eds.), Microsimulation modelling for policy analysis. Challenges and innovations (pp. 200–225). Cambridge: Cambridge University Press.Google Scholar
  6. Carson, J. S. (1989). Verification and validation. A consultant’s perspective. In: E. A. MacNair, K. J. Musselman, & P. Heidelberger (Eds.), Proceedings 1989 Winter Simulation Conference (pp. 552–557).Google Scholar
  7. Crease, R. P. (1997). Hermeneutics and the natural science: Introduction. Man and World, 30, 259–270.CrossRefGoogle Scholar
  8. D’Agostino, F. (2014). Hermeneutics, epistemology, and science. In: J. Malpras & H. -H. Gander (Eds.), The Routledge companion to hermeneutics (pp. 417–428). London: Routledge.Google Scholar
  9. Doublet, D. R. (2003). Der Hermeneutische Zirkel: Über Grenzen für die Interpretation und Bedingungen für das Verstehen. In S. U. Larsen & E. Zimmermann (Eds.), Theorien und Methoden in den Sozialwissenschaften (pp. 61–75). Wiesbaden: Springer VS.CrossRefGoogle Scholar
  10. Eger, M. (1997). Achievement of the hermeneutic-phenomenological approach to natural science. A comparison with constructivist sociology. Man and World, 30, 343–367.CrossRefGoogle Scholar
  11. Feher, M., Kiss, O., & Ropolyi, L. (Eds.). (1999). Hermeneutics and science. Dordrecht: Reidel.Google Scholar
  12. Feinstein, A. H., & Cannon, H. M. (2003). A hermeneutical approach to external validation of simulation models. Simulation & Gaming, 34, 186–197.CrossRefGoogle Scholar
  13. Feyerabend, P. (1975). Against method. Outline of an anarchistic theory of knowledge. London: New Left Books.Google Scholar
  14. Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P., Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., & Rummukainen, M. (2013). Evaluation of climate models. In: Stocker, T. F., D. Qin, G. -K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.Google Scholar
  15. Forrester, J. W. (1961). Industrial dynamics. Cambridge, MA: MIT Press.Google Scholar
  16. Gadamer, H. -G. (1990). Reply to my critics. In: D. Ormiston & A. Schrift (Eds.), The hermeneutic tradition (pp. 273–297). Albany, NY: Suny Press.Google Scholar
  17. Gadamer, H. -G. (2013). Truth and method. Rev. 2nd edn. Trans. by J. Weinsheimer & D. G. Marshall. London: Bloomsbury. [1st German edition: 1960. Wahrheit und Methode. Grundzüge einer philosophischen Hermeneutik. Tübingen: Mohr].Google Scholar
  18. Guillemot, H. (2010). Connections between simulations and observation in climate computer modeling. Scientist’s practices and ‘‘bottom-up epistemology’’ lessons. Studies in History and Philosophy of Modern Physics, 41, 242–252.CrossRefGoogle Scholar
  19. Habermas, J. (1984). The theory of communicative action. Vol. 1. Reason and the rationalization of society. Trans. and introduced by T. McCarthy. Boston, MA: Beacon Press.Google Scholar
  20. Habermas, J. (1996). Between facts and norms. Contributions to a discourse theory of law and democracy. Trans. and introduced by W. Rehg. Cambridge, UK: Polity Press.Google Scholar
  21. Heelan, P. A. (1998). The scope of hermeneutics in natural science. Studies in History and Philosophy of Science, 29, 273–298.CrossRefGoogle Scholar
  22. Humphreys, P. (2004). Extending ourselves. Computational science, empiricism, and scientific method. Oxford: Oxford University Press.Google Scholar
  23. Humphreys, P. (2009). The philosophical novelty of computer simulation methods. Synthese, 169, 615–626.MathSciNetCrossRefGoogle Scholar
  24. Kisiel, T. (1997). A hermeneutics of the natural sciences? The debate updated. Man and World, 30, 329–341.CrossRefGoogle Scholar
  25. Kleindorfer, G. B., & Geneshan, R. (1993). The philosophy of science and validation in simulation. In: Proceedings of the 25th Conference on Winter Simulation (WSC 1993), New York, NY, USA (pp. 50–57).Google Scholar
  26. Kleindorfer, G. B., O’Neill, L., & Ganeshan, R. (1998). Validation in simulation: Various positions in the philosophy of science. Management Science, 44, 1087–1099.CrossRefGoogle Scholar
  27. Kuhn, T. (1970). The structure of scientific revolutions. Chicago: University of Chicago Press.Google Scholar
  28. Malpas, J., & Gander, H.-H. (Eds.). (2014). The Routledge companion to hermeneutics. London and New York: Routledge.Google Scholar
  29. Markus, G. (1987). Why is there no hermeneutics of the natural sciences? Some preliminary theses. Science in Context, 1, 5–51.CrossRefGoogle Scholar
  30. Naylor, T. H., & Finger, J. M. (1967). Verification of computer simulation models. Management Science, 14, B92–B101.CrossRefGoogle Scholar
  31. Newton, P. E., & S. D. Shaw (2014). Validity in educational and psychological assessment. Sage Publications Ltd.Google Scholar
  32. Oreskes, N., Shrader-Frechette, K., & Belitz, K. (1994). Verification, validation, and confirmation of numerical models in the earth sciences. Science, 263, 641–646.CrossRefGoogle Scholar
  33. Poscher, R. (2014). Hermeneutics, jurisprudence and law. In J. Malpas & H.-H. Gander (Eds.), The Routledge companion to hermeneutics (pp. 451–465). London and New York: Routledge.Google Scholar
  34. Reutlinger, A., Hagleiter, D., & Hartmann, S. (2018). Understanding (with) toy models. The British Journal for the Philosophy of Science, 69, 1069–1099.Google Scholar
  35. Ramberg, B., & Gjesdal, K. (2005). Hermeneutics. In: E. N. Zalta (Ed.), The stanford encyclopedia of philosophy (2005 ed.). https://plato.stanford.edu/archives/win2014/entries/hermeneutics/#Pragmatism.
  36. Saam, N. J. (2017). Understanding social science simulations. Distinguishing two categories of simulations. In: M. Resch, A. Kaminski, & P. Gehring (Eds.), The science and art of simulation I. Exploring - Understanding - Knowing (pp. 67–84). Cham: Springer.Google Scholar
  37. Saam, N. J., & Schmidl, A. (2018). ‘A Distinct Element of Play.’ Scientific computer simulation as playful investigating. In: A. Friedrich, P. Gehring, C. Hubig, A. Kaminski, & A. Nordmann (Eds.), Arbeit und Spiel. Jahrbuch Technikphilosophie 2018 (pp. 99–118). Baden-Baden: Nomos.Google Scholar
  38. Schlesinger, S. (1979). Terminology for model credibility. Simulation, 32, 103–104.CrossRefGoogle Scholar
  39. Shackley, S. (2001). Epistemic lifestyles in climate change modeling. In C. A. Miller & P. N. Edwards (Eds.), Changing the atmosphere: Expert knowledge and environmental governance (pp. 107–133). Cambridge, MA, USA: The MIT Press.Google Scholar
  40. Smith, N. H. (2014). Hermeneutics and critical theory. In: J. Malpas & H. -H. Gander (Eds.), The Routledge companion to hermeneutics (pp. 600–611). London and New York: Routledge.Google Scholar
  41. Steinmann, M. (2007). Auf dem Weg zu einer modernen Epistemologie. In G. Figal (Ed.), Hans-Georg Gadamer: Wahrheit und Methode (pp. 87–103). Berlin: Akademie Verlag.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut für Soziologie, Friedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations