Advertisement

What Types of Values Enter Simulation Validation and What Are Their Roles?

  • Gertrude Hirsch HadornEmail author
  • Christoph Baumberger
Chapter
Part of the Simulation Foundations, Methods and Applications book series (SFMA)

Abstract

Based on a framework that distinguishes several types, roles and functions of values in science, we discuss legitimate applications of values in the validation of computer simulations. We argue that, first, epistemic values, such as empirical accuracy and coherence with background knowledge, have the role to assess the credibility of simulation results, whereas, second, cognitive values, such as comprehensiveness of a conceptual model or easy handling of a numerical model, have the role to assess the usefulness of a model for investigating a hypothesis. In both roles, values perform what we call first-order functions. In addition, cognitive values may also serve an auxiliary function by facilitating the assessment of credibility. As for a third type of values, i.e. social values, their legitimate role consists in specifying and weighing epistemic and cognitive values with respect to practical uses of a simulation, which is considered a second-order function. Rational intersubjective agreement on how to specify and weigh the different values is supposed to ensure objectivity in simulation validation.

Keywords

Epistemic values Cognitive values Social values Credibility Relevance Practicability 

Notes

Acknowledgements

We thank Claus Beisbart, Johannes Lenhard and Nicole J. Saam for valuable comments and suggestions to improve this manuscript.

References

  1. Barnes, B., & Bloor, D. (1982). Relativism, rationalism and the sociology of knowledge. In M. Hollis & S. Lukes (Eds.), Rationality and relativism (pp. 21–47). Oxford, UK: Blackwell.Google Scholar
  2. Baumberger, C., Knutti, R., & Hirsch Hadorn, G. (2017). Building confidence in climate model projections: An analysis of inferences from fit. WIREs Climate Change, e454,  https://doi.org/10.1002/wcc.454.Google Scholar
  3. Betz, G. (2013). In defence of the value free ideal. European Journal for Philosophy of Science, 3, 207–220.  https://doi.org/10.1007/s13194-014-0095-4.CrossRefGoogle Scholar
  4. Betz, G. (2016). Accounting for possibilities in decision making. In S. O. Hansson & G. Hirsch Hadorn (Eds.), The argumentative turn in policy analysis: Reasoning about uncertainty (pp. 135–169). Cham: Springer.  https://doi.org/10.1007/978-3-319-30549-3_6.Google Scholar
  5. Cartwright, N. (2006). Well-ordered science: Evidence for use. Philosophy of Science, 73, 981–990.  https://doi.org/10.1086/518803.CrossRefGoogle Scholar
  6. Cartwright, N. (2012). Presidential address: Will this policy work for you? Predicting effectiveness better: Philosophy helps. Philosophy of Science, 79, 973–989.  https://doi.org/10.1086/668041.MathSciNetCrossRefGoogle Scholar
  7. Cranor, C. (1995). The social benefits of expedited risk assessments. Risk Analysis, 15, 353–358.  https://doi.org/10.1111/j.1539-6924.1995.tb00328.x.CrossRefGoogle Scholar
  8. Diekmann, S., & Zwart, S. D. (2014). Modeling for fairness: A Rawlsian approach. Studies in History and Philosophy of Science, 46, 46–53.  https://doi.org/10.1016/j.shpsa.2013.11.001.CrossRefGoogle Scholar
  9. Douglas, H. E. (2000). Inductive risk and values in science. Philosophy of Science, 67, 559–579.  https://doi.org/10.1086/392855.CrossRefGoogle Scholar
  10. Douglas, H. E. (2013). The value of cognitive value. Philosophy of Science, 80, 796–806.  https://doi.org/10.1086/673716.CrossRefGoogle Scholar
  11. Douglas, H. E. (2016). Values in science. In P. Humphreys (Ed.), The Oxford handbook of philosophy of science (pp. 609–630). New York: Oxford University Press.Google Scholar
  12. Elliott, K. C. (2011). Direct and indirect roles for values in science. Philosophy of Science, 78, 303–324.  https://doi.org/10.1086/659222.CrossRefGoogle Scholar
  13. Elliott, K. C., & McKaughan, D. J. (2014). Nonepistemic values and the multiple goals of science. Philosophy of Science, 81, 1–21.  https://doi.org/10.1086/674345.CrossRefGoogle Scholar
  14. Flato, G. M. (2011). Earth system models: An overview. WIREs Climate Change, 2, 783–800.  https://doi.org/10.1002/wcc.148.CrossRefGoogle Scholar
  15. Frigg, R., Thompson, E., & Werndl, C. (2015). Philosophy of climate science, part II: Modelling climate change. Philosophy Compass, 10, 965–977.  https://doi.org/10.1111/phc3.12297.CrossRefGoogle Scholar
  16. Gaertner, W., & Wüthrich, N. (2015). Evaluating competing theories via a common language of qualitative verdicts. Synthese, 193, 3293–3309.  https://doi.org/10.1007/s11229-015-0929-4.MathSciNetCrossRefGoogle Scholar
  17. Goldman, A., & Blanchard, T. (2016). Social Epistemology. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Winter 2016 Edition), https://plato.stanford.edu/archives/win2016/entries/epistemology-social/.
  18. Held, I. M. (2005). The gap between simulation and understanding in climate modeling. Bulletin of the American Meteorological Society, 86, 1609–1614.  https://doi.org/10.1175/BAMS-86-11-1609.CrossRefGoogle Scholar
  19. Hempel, C. G. (1965). Science and human values. In C. G. Hempel (Ed.), Aspects of scientific explanation and other essays in the philosophy of science (pp. 81–96). New York: The Free Press.Google Scholar
  20. Hempel, C. G. (1988/2000). On the cognitive status and the rationale of scientific methodology. In R. Jeffrey (Ed.), Selected philosophical essays (pp. 199–228). Repr. Cambridge: Cambridge University Press.Google Scholar
  21. Hirsch Hadorn, G. (2018). On rationales for cognitive values in the assessment of scientific representations. Journal for General Philosophy of Science.  https://doi.org/10.1007/s10838-018-9403-6.CrossRefGoogle Scholar
  22. Intemann, K. (2015). Distinguishing between legitimate and illegitimate values in climate modeling. European Journal for Philosophy of Science, 5, 217–231.  https://doi.org/10.1007/s13194-014-0105-6.CrossRefGoogle Scholar
  23. Jeffrey, R. C. (1956). Valuation and acceptance of scientific hypotheses. Philosophy of Science, 23, 237–246.  https://doi.org/10.1086/287489.CrossRefGoogle Scholar
  24. Kitcher, P. (2001). Science, truth, and democracy. Oxford: Oxford University Press.CrossRefGoogle Scholar
  25. Knutti, R. (2008). Should we believe model predictions of future climate change? Philosophical Transactions of the Royal Society A, 366, 4647–4664.  https://doi.org/10.1098/rsta.2008.0169.MathSciNetCrossRefGoogle Scholar
  26. Kuhn, T. (1977). Objectivity, value judgment, and theory choice. In T. Kuhn (Ed.), The essential tension (pp. 320–339). Chicago: University of Chicago Press.CrossRefGoogle Scholar
  27. Lacey, H. (2004). Is there a significant distinction between cognitive and social values? In P. Machamer & G. Wolters (Eds.), Science, values and objectivity (pp. 24–51). Pittsburgh, PA: University of Pittsburgh Press.CrossRefGoogle Scholar
  28. Laudan, L. (1984). Science and values. The aims of science and their role in scientific debate. Berkeley, CA: University of California Press.Google Scholar
  29. Laudan, L. (2004). The epistemic, the cognitive, and the social. In P. Machamer & G. Wolters (Eds.), Science, values and objectivity (pp. 14–23). Pittsburgh, PA: University of Pittsburgh Press.CrossRefGoogle Scholar
  30. Levi, I. (1960). Must the scientist make value judgments? The Journal of Philosophy, 57, 345–357.  https://doi.org/10.2307/2023504.CrossRefGoogle Scholar
  31. Levi, I. (1986). Hard choices: Decision making under unresolved conflicts. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  32. Longino, H. (2002). The fate of knowledge. Princeton, NJ: Princeton University Press.Google Scholar
  33. Machamer, P., & Osbeck, L. (2004). The social in the epistemic. In P. Machamer & G. Wolters (Eds.), Science, values and objectivity (pp. 78–89). Pittsburgh, PA: University of Pittsburgh Press.CrossRefGoogle Scholar
  34. Machamer, P., & Wolters, G. (2004). Introduction. In P. Machamer & G. Wolters (Eds.), Science, values and objectivity (pp. 1–13). Pittsburgh, PA: University of Pittsburgh Press.Google Scholar
  35. Mastrandrea, M. D., Field, C. B., Stocker, T. F., Edenhofer, O., Ebi, K. L., Frame, D. J., Held, H., Kriegler, E., Mach, K. J., Ebi, K. L., Matschoss P. R., Plattner, G.-K., Yohe, G. W., & Zwiers, F. W. (2010). Guidance note for lead authors of the IPCC Fitfth Assessment Report on consistent treatment of uncertainties. Intergovernmental Panel on Climate Change (IPCC). Retrieved from http://www.ipcc.ch.
  36. McMullin, E. (1983). Values in science. Proceedings of the Biennial meeting of the philosophy of science association, 2, 3–28. http://www.jstor.org/stable/192409.Google Scholar
  37. McMullin, E. (1985). Galileian idealization. Studies in the History of Philosophy of Science, 16, 247–273.  https://doi.org/10.1016/0039-3681(85)90003-2.MathSciNetCrossRefGoogle Scholar
  38. Okasha, S. (2011). Theory choice and social choice: Kuhn versus Arrow. Mind, 120, 83–115.  https://doi.org/10.1093/mind/fzr010.MathSciNetCrossRefGoogle Scholar
  39. Parker, W. S. (2009). Confirmation and adequacy-for-purpose in climate modeling. Proceedings of the Aristotelian Society, Supplementary, 83, 233–249.  https://doi.org/10.1111/j.1467-8349.2009.00180.x.CrossRefGoogle Scholar
  40. Parker, W. S. (2014). Values and uncertainties in climate prediction, revisited. Studies in History and Philosophy of Science, 46, 24–30.  https://doi.org/10.1016/j.shpsa.2013.11.003.CrossRefGoogle Scholar
  41. Peschard, I., & van Fraassen, B. C. (2014). Making the abstract concrete: The role of norms and values in experimental modeling. Studies in History and Philosophy of Science, 46, 3–10.  https://doi.org/10.1016/j.shpsa.2013.11.004.CrossRefGoogle Scholar
  42. Rabinowicz, W. (2008). Value relations. Theoria, 74, 18–49.  https://doi.org/10.1111/j.1755-2567.2008.00008.x.CrossRefGoogle Scholar
  43. Rochefort-Maranda, G. (2016). Simplicity and model selection. Euro Journal for Philosophy of Science, 6, 261–279.  https://doi.org/10.1007/s13194-016-0137-1.MathSciNetCrossRefGoogle Scholar
  44. Rudner, R. (1953). The scientist qua scientist makes value judgments. Philosophy of Science, 20, 1–6.CrossRefGoogle Scholar
  45. Schmidt, G. A., & Sherwood, S. (2015). A practical philosophy of complex climate modeling. European Journal for Philosophy of Science, 5, 149–169.  https://doi.org/10.1007/s13194-014-0102-9.CrossRefGoogle Scholar
  46. Spohn, W. (2004). On the objectivity of facts, beliefs, and values. In P. Machamer & G. Wolters (Eds.), Science, Values and Objectivity (pp. 172–189). Pittsburgh, PA: University of Pittsburgh.CrossRefGoogle Scholar
  47. Steel, D. (2010). Epistemic values and the argument from inductive risk. Philosophy of Science, 77, 14–34.  https://doi.org/10.1086/650206.MathSciNetCrossRefGoogle Scholar
  48. Steele, K. (2012). The scientist qua policy advisor makes value judgments. Philosophy of Science, 79, 893–904.  https://doi.org/10.1086/667842.CrossRefGoogle Scholar
  49. Strevens, M. (2006). The Bayesian approach to the philosophy of science. In D. M. Borchert (Ed.), Encyclopedia of Philosophy (2nd ed., pp. 495–502). New York, NY: Macmillan Reference.Google Scholar
  50. van Fraassen, B. C. (1980). The scientific image. Oxford: Clarendon Press.CrossRefGoogle Scholar
  51. Weisberg, M. (2007). Three kinds of idealization. The Journal of Philosophy, 104, 639–659.  https://doi.org/10.5840/jphil20071041240.CrossRefGoogle Scholar
  52. Weisberg, M. (2013). Simulation and similarity: Using models to understand the world. Oxford: Oxford University Press.CrossRefGoogle Scholar
  53. Wilholt, T. (2009). Bias and values in scientific research. Studies in History and Philosophy of Science, 40, 92–101.  https://doi.org/10.1016/j.shpsa.2008.12.005.CrossRefGoogle Scholar
  54. Winsberg, E. (2010). Science in the age of computer simulation. Chicago, IL: Chicago University Press.CrossRefGoogle Scholar
  55. Winsberg, E. (2015). Computer simulations in science. In E. Edward (Ed.), The Stanford Encyclopedia of Philosophy (Summer 2015 Edition). Retrieved from http://plato.stanford.edu/entries/simulations-science/.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.ETH Zurich, Institute for Environmental DecisionsZürichSwitzerland

Personalised recommendations